
 L1-L4 DESIGN EXAMPLE

This document explains the approach of test design in L1-L4 with an example.

The sample application considered here is a POS application from Unicenta (http://unicenta.com).

UnicentaPOS is an open source point of sale application. This application caters into Retail, Hospitality and
Mixed verticals of the market. The application has lots of interesting features that support the POS.

The EUT considered here is a feature that allows adding customer accountID with a specified credit limit.

Design at L1 – Input cleanliness

EUT - System should allow adding customer accountID with a specified credit limit (FE1).

The snapshot of the GUI screen for the feature is as shown below.

Step 1 - Identify the inputs for the feature and understand the specification of each input.

Step 2 - Identify the PDTs that are applicable to each input based on the input specification.

Note: As per HBT, at L1 we are looking for FIVE kinds of issues (PDTs) for each input. The PDTs are 1) PDT1 - Data type
issue, PDT2 – Data format issue, PDT3 – Data boundary issue, PDT4 – Data dependency issue and PDT5 – Data value set
issue. It is important to identify what these issues meant in your context of EUT and then appropriately customize it.

Input Input specification

AccountID Accepts string, number; Max length allowed is 8 and Min length required is 4; Special characters not
allowed.

Search Key Any string, number in the range of 4-8 character length. No space allowed.

Name Same specification as AccountID

Credit Limit Should be numeric values, always show in decimal with precision 2 and $symbol

Visible Yes/No. Implemented as check box

Other inputs Card, Current Debt, Debt date are non-editable fields and values are populated automatically. So not
considered as part of input validation here.

 STAG Software Private Ltd, HBT is the IP of STAG. Page 1

http://unicenta.com

 L1-L4 DESIGN EXAMPLE

Now we are clear about what type of issues need to be look for each input.

Step 3 – Design the scenarios based on the identification of applicable PDTs for each input.

Step 4 – Generate the test cases for each scenario.

To generate test cases, we need to identify the test data values for each input based on the specification.

Input Input specification PDT1 PDT2 PDT3 PDT4 PDT5

AccountID Accepts string, number; Max length allowed is 8 and Min length
required is 4; Special characters not allowed. x x

Search Key Any string, number in the range of 4-8 character length. No
space allowed. x x

Name Same specification as AccountID x x

Credit
Limit

Should be numeric values, always show in decimal with precision
2 and $symbol x

Visible Yes/No. Implemented as check box x

TSID Scenario description Type PDT Map

FE1.TS1 Ensure that the accountID does not accept invalid values -ve PDT1,PDT3

FE1.TS2 Ensure that searchKey does not accept invalid values -ve PDT1,PDT3

FE1.TS3 Ensure that Name field does not accept invalid values -ve PDT1,PDT3

--- ------- --- ---

--- -------- -- ---

Input Input specification Test data value set (-ve value set)

AccountID Accepts string, number; Max length allowed is 8 and Min
length required is 4; Special characters not allowed.

String/Number with length 9, with length 3

Value with length 4 that has a special
character

Search Key Any string, number in the range of 4-8 character length.
No space allowed.

Same as above, here special character is
space

Name Same specification as AccountID Same as accountID

 STAG Software Private Ltd, HBT is the IP of STAG. Page 2

 L1-L4 DESIGN EXAMPLE

Here apply techniques like BVA, Equivalence partitioning, Error guessing, special value on each input and
identify the negative set of values based on the specification of each input. Considering only negative values
as in L1 the objective is to ensure that the invalid values are rejected gracefully by each input.

Design at L2 – Input interface cleanliness

Here the feature (FE1) is used by the users by a GUI.

Step 1 – Identify the elements of the FE1 interface and the specification of each element in the interface (GUI).

Here the elements are AccountID, search key, Name, Card, Visible, Credit limit etc.

Interface specification are like Card, CurrentDate,Deb date should be non-editable, Visible should be a check
box, there should be two icons next to card, one for searching the card and second for removing the selected
card details etc.

Step 2 – Identify the applicable PDTS with respect to the FE1 and understand what it means in this context

There are some common PDTs that needs to be validated at Level 2 is given already. We need to select the
applicable PDTs in the current context (GUI of FE1) and understand what it means here. Please add more PDTs
specific to the context if necessary. This is a base list of common PDTs at level L2.

Credit
Limit

Should be positive numeric values, always show in
decimal with precision 2 and $symbol

Credit value less than ZERO, without decimal
point, without the $ symbol, Non-numeric
value

Visible Yes/No. Implemented as check box No specific value can given as –ve here as it is
implemented as a check box.

TCID Test case description Test
data

Expected Result

FE1.TS1.T
C1

Verify that the AccountID does not accept string
with length 3

Acc Display message that AccountID cannot be
less than 4 character length

FE1.TS1.T
C2

Verify that the AccountID does not accept string
with special characters

Account
!

Display message that AccountID cannot
include special character

--- ------- --- ---

--- -------- -- ---

PDT Description Applicable? Meaning in the context

1 Wrong/ambiguous error message Yes
Input validation messages, responses after actions may show
wrong messages

 STAG Software Private Ltd, HBT is the IP of STAG. Page 3

 L1-L4 DESIGN EXAMPLE

Once we identify the PDTs applicable and what it means to the context, and then check for all these in the given GUI of
the feature. This can be treated as a check list and check for these issues. No need to write separate test cases at this
level.

In addition to the above mentioned PDTs, please check if any other interface behaviors need to be checked for the given
Feature and cover that also. (E.g. like, the company icon should be in the left corner, mandatory fields should show with
red asterisk, some buttons should be disables based on some other field’s value etc)

Design at L3 – Structural integrity

2 Wrong/ambiguous help information No

3 Lack of warnings/error messages No

4 Improper scope of interface access No

5 Misleading API name No

6 Insufficient information to use the
API No

7 Missing/extra components

Yes

The screen should contain all the fields mentioned in the
screen shot (ideally we need to list down the fields as per
specification and check for the existence of those in the
GUI).

8 Component placement issue
Yes

The order of fields placement need to be checked as per
the specification. Icons for edit and remove should display
after card.

9 Color/font/alignments issue Yes
Font style and alignment of fields in this feature to be
checked

10 Spelling/grammar mistakes Yes
All field labels and messages to be checked for spelling
mistakes

11 Lack of display clarity No

12 Incorrect no of arguments No

13 Wrong order of arguments No

14 Incorrect data type/size of
arguments No

15 Invalid return type No

16 Incorrect UI element response

Yes

Card, Customer Tax, Current Debt should be disabled from
editing, Current Debt should calculate once we enter Credit
Limit, Date format should display in dd/mm/yyyy format in
Debt Date.

17 Wrong/No progress message No

18 Incorrect tab sequence No

19 Cursor displayed in the wrong
place Yes

Cursor has to be displayed in the component where the
focus is present

20 Lack of real-time inline validation Yes Credit limit should be validated inline.

 STAG Software Private Ltd, HBT is the IP of STAG. Page 4

 L1-L4 DESIGN EXAMPLE

Validation at this level is more of the internal design and code level issues. We need some code level information like
internal design, coding standards to be followed, the implementation logic etc.

The common issue looking at this level is whether the expected exceptions are handles well, is the resources used are
released in timely manner, is the internal implementation follows the coding and guidelines it is supposed to follow etc.

This is more like preventing defects in the implementation stage rather than detecting these issues at the later stage.

Design at L4 – Behaviour correctness

 At this level the entity (FE1) will be evaluated for the completeness and correctness of its intended functional
behavior.

Step 1 – Understand the functional behavior of the feature FE1.

 The feature will allow adding customer account with credit limit. Duplicate customers are not allowed. Customers will
be created only when all the mandatory details are provided with valid set of values. The account can be created with
TWO types of pre-defined tax category. The created account will be visible to the public or hide from the public based
on the selection of visible tag during account creation.

Step 2 – Identify the conditions that govern the behavior of the feature FE1.

1. Mandatory detail completed or partial

2. Account created with hidden/visible mode

3. Account already exists will be rejected

4. Account with 2 tax category can be created

Step 3 – Identify the possible values of each of these conditions identified.

 STAG Software Private Ltd, HBT is the IP of STAG. Page 5

 L1-L4 DESIGN EXAMPLE

Each conditions value will be controlled by the value of some data input. So we need to identify the data
elements that control the value of each of these conditions to understand the possible values of each of these
conditions.

Step 4 – Logically combine the conditions based on the possible values identified for each condition.

Here we are using Decision Table technique to come up with the logical combination of the conditions.

Input conditions Positive value set
Negative value
set

Is the account Id valid?
 New account id already existing

Mandatory fields complete and
valid?

Complete and valid, Partial information

Invalid
information

Tax category

Category1, Category2 (Assumed TWO tax
category)

Visibility flag

ON/OFF

Input conditions Positive value set
Negative
value set

Combination of conditions (Rules in Decision Table)

R1 R2 R3 R4

Is the account Id
valid?

New account id, already
existing

Invalid
account ID

New account New account Existing
account New account

Mandatory fields
complete and
valid?

Complete and valid, Partial
information

Invalid
information

Complete
info

Complete
info

Complete
info Partial info

Tax category

Category1, Category2
(Assumed TWO tax category)

Category 1 Category 2 Categroy1 Categroy2

Visibility flag

ON/OFF
 ON OFF ON OFF

Expected Output (result)

O1 - Account Created with visible flag ON for the selected tax
category x

O2 - Account created with visible flag OFF for the selected tax
category x

O3 - Display message – AccountID already exists x

O4 - Display message account cannot be created x

 STAG Software Private Ltd, HBT is the IP of STAG. Page 6

 L1-L4 DESIGN EXAMPLE

Each rule in the decision table is a scenario with a one-one mapping to the expected result. (O1, O2, O3, O4 are the
outputs)

Like this we need to combine all possible combination of conditions and derive the scenarios. Some combinations may
not make sense in the given context. Neglect such combinations.

Step 5 – Convert each rule into the test scenario with a description of each scenario

Step 6 – Generate the test cases for each scenario

TSID Scenario description Type Expected Result

FE1.L4.TS
1

Ensure that the account can be created by providing valid mandatory
information that can be visible to everyone +ve O1

FE1.L4.TS
2

Ensure that the account can be created by providing valid mandatory
information that can be visible to selected members and hidden from public +ve O2

FE1.L4.TS
3

Ensure that duplicate accounts cannot be created -ve O3

FE1.L4.TS
4

Ensure that account cannot be created without providing the mandatory
information -ve O3

--- -------- -- ---

TCID Test case description Test data Expected Result

FE1.L4.TS1.T
C1

Verify that the account can be created with visibility flag
ON provided all the mandatory fields are valid.

Provide non-
existing accountID
with length 4

O1

FE1.L4.TS1.T
C2

Verify that the account can be created with visibility flag
ON provided all the mandatory fields are valid.

Provide non-
existing accountID
with length 9

O1

--- ------- --- ---

--- -------- -- ---

 STAG Software Private Ltd, HBT is the IP of STAG. Page 7

 L1-L4 DESIGN EXAMPLE

Note: This document is intended to describe the approach of test design. It is not required to create and collect the
details in the format specified always. The information can be collected in any format. What is important is the
approach to test design at each level.

 STAG Software Private Ltd, HBT is the IP of STAG. Page 8

