
 T Ashok
CEO, STAG Software
linkedin.com/in/ashokstag

© STAG Software Private Limited 2018
 stagsoftware.com

http://linkedin.com/in/ashokstag
http://linkedin.com/in/ashokstag

Practical Implementation of Development Code Quality

TABLE OF CONTENTS

The problem at large 3

Business/economic impact 3

Mistaken notions of WB and BB 3

Unit testing? Dev testing is a better term 4

“Quality Levels” - Defect types matter 4

Dev testing - What is the objective? 5

So, what levels matter to the developer? 5

Is your dev test effective? 5

So, what should be really happening in Agile context? 5

It is not about doing more, it is about doing less 5

Practical implementation of great dev quality 6

Hmm.. do we really need unit (dev) tests? 6

The power of checklists in other disciplines 6

Checklists are not mindless compliance 6

Smart checklists make you think 6

We use checklists too, but are we effective? 7

Smart checklist enables developing clean code 7

The “Test Pyramid” 7

How to make dev tests effective 8

Survey results and my experience 8

“The flow” 9

References 10

Appendix : Smart DevChecklist 11

�2

Practical Implementation of Development Code Quality

The problem at large
The quality of early stage code is felt to be a concern by many engineering managers
that I talk to. In my numerous consulting assignments, I have noticed that many issues
found by QA folks seem to be ones that do not require the expertise of a specialist
tester, compromising the effectiveness of ‘system test’ resulting in avoidable customer
issues.

Great quality code is not the result of intense system testing, it is result of well structured
filtration of issues from the early stages. A compromised ‘unit test’ puts unnecessary
strain on the QA folks who seem to be compelled to go after these issues at the expense
of system test.

Developers on the other hand do not deliberately write bad code, it is just that
accidents happen. Accidents seem to happen due to brute force push of unit testing
without it being simple and practical, and developers already short of time are unable to
adhere to a heavyweight process. The other fallacy seems to the over dependence on
automated unit tests as the saviour without paying attention to test cases. Also the
incorrect notion of unit testing as being only white-box oriented with a skew towards
code coverage results in ineffective tests that are introverted. Lastly the sheer emphasis
of dynamic testing as the only method to uncover defects is possibly overwhelming,
when easier static methods of uncovering issues could have been employed. 

Business/economic impact
The impact of leakage of issues from early stage is not irritating, but serious enough.
Issues reported by customers that are early stage simple issue like poor validation of
inputs, results in significant drop of confidence in the customer. The QA folks focus on
these issues result in their job of system validation being poor, resulting in field issues
related to end-to-end flows and sometimes attributes being compromised.

Also the incorrect focus of a specialist QA results in insufficient time for doing things that
can make system test more effective and efficient like automation of end-to-end flows,
focus on non-functional requirements, revising the test strategy/approach and
sharpening with knowledge gained every cycle.

Mistaken notions of WB and BB
Developers state that they do white box testing while specialist QA folks claim that they
do black box testing. Hmm, are they they logical at all? Let us examine the incorrectness
of the statement.

Black and white are techniques for examining a system under test for potential issues.
The former is about identifying governing conditions of intended behaviour, and then
generate these scenarios so as to inject the system with a variety of inputs to assess
correctness. On the contrary, the latter is about understanding the internal structure of
the system-under-test (SUT) and then perturbing the structure to assess how they can
result in deviant behaviour.

�3

Practical Implementation of Development Code Quality

So would you do ONLY external or internal examination? or Would you meaningfully
adopt both? Also, what is the meaning of structure in the small vs large system-under-
test?

Unit testing? Dev testing is a better term
The definition of what an unit is most often unclear and therefore unit testing more
misunderstood. Martin Fowler in his blog Unit Test [2] states “It's very ill-defined, and I
see confusion can often occur when people think that it's more tightly defined than it
actually is “.

So let us use the term “Dev test” to state the early validation by developers during the
development of code. What is expected of the code quality from developers? What
should dev test uncover? To setup a clear objective of what dev test should accomplish
(objective), let us take a goal focused approach of as to what types of defects should be
uncovered at dev test.

“Quality Levels” - Defect types matter
Purposeful testing is about hypothesising potential type of defects and going after
them. Of course, as we one engages in this activity in the scientific manner, we revise
and fine tune what to go after and how to go after.

Characterising the system under test as containing a “mixture” of various defect types,
and inspired by fractional distillation as an efficient method of separation, Hypothesis
Based Testing (HBT) [1] sets up NINE quality levels of which the first FOUR are certain
candidates for dev testing.

So what are the quality levels and what is the purpose of tests at those levels?
L1: Ensure bad inputs are rejected, about data types, values,
boundaries
L2: Ensure that input interface is clean, about syntax(format),
order, messages
L3: Ensure that internal structure is robust, about exception,
resource handling, timing/sync, loops/iteration
L4: Ensure behaviour of feature is fine, about the business logic
of the base technical feature
L5: Ensure behaviour of requirement/flow is fine, about the
business logic of the requirement/flow that is a collection of
technical features
L6: Ensure system works well is all different external
environments and does not affect the environment
L7: Ensure that key requirement/flow satisfies the expected
attributes (e.g performance, volume…)
L8: Ensure that final system deploys well in the real environment.
Installation, configuration, migration are of interest here.
L9: Done by end users, the intention is ensure that it satisfies the � �4

https://martinfowler.com/bliki/UnitTest.html

Practical Implementation of Development Code Quality

Dev testing - What is the objective?
The objective of dev testing is that the building blocks of a system i.e. structural
components are indeed clean enough to deliver the basic feature and worthy of
integration to form the larger system. This means that a building block is internally
robust (structurally clean) and behaviourally correct (externally clean).

So, what levels matter to the developer?
Quality levels denote a progression of quality as software is built. So as a developer, it is
necessary to validate that basic behaviour of the building blocks that we build/modify.
This means that a developer performs tests to ensure Levels 1-4 are satisfied, implying
that the component is clean enough to integrate into the larger system. Additionally, if
the component is critical to certain system attributes, then higher level tests beyond L5
L5 could be useful to do.

Is your dev test effective?
Well, if the defects found by the specialised QA do not belong to the earlier quality
levels (L1-L4), then dev tests are have been done well. In the case of non-trivial number
of L1-L4 issues found by the QA, it implies that dev test may not be good enough as
defects are leaking to the product test stage done by the QA.

So, what should be really happening in Agile context?
Lean thinking is what inspired the Agile movement. Lean is about not producing waste
in the first place. It is doing things ‘clean’ in the first place, so that waste is ideally not
there. Waste in software context are bugs. And in the early stages there are ‘unit bugs’.
Since our focus in Agile is to find these earlier and to ensure that they are never there
whenever we modify, we resort to a high degree of automation. Therefore we have a
large body of test cases at the lower levels automated to ensure that we can continually
execute them. This is great, but should we not focus on adopting a practice that in
essence prevents these issues and lessen the need for large number of unit tests to
uncover these?

It is not about doing more, it is about doing less
When we find issues in the product/app especially those that can be caught earlier, we
focus on more rigorous dev test with extreme focus on automation. Yes, that seems
logical. But what a minute, for a developer already busy writing code, is this the right
approach? Given that dev test is largely about issues in L1 thru L4, could we not focus
on getting this right or statically assess these via smart checklist?

Great quality early stage code is not about doing more testing, it really is doing about
doing less test, by enabling sharper focus on ‘what-can-go-wrong’, ‘have-you-
considered-this’.

�5

Practical Implementation of Development Code Quality

Practical implementation of great dev quality
Segregating the defect finding into levels, it is possible to bring sharp focus into L1~L3
and sensitisation to enable reuse type of defects to be prevent or detected early
statically without doing too much work.
Given that structural components that deliver technical features to be reasonably small,
it may be possible to validate behavior without resorting to only testing.

Hmm.. do we really need unit (dev) tests?
Yes, dev tests are key to delivering clean structural components, it is just that they can be
done much more simply and efficiently. Efficiently, not only via automation but also by
resorting to smart checklists that sensitise you to prevent or check rapidly, not
mindlessly make you tick and comply.

The power of checklists in other disciplines
In other mature disciplines like medicine, aviation, construction where the impact of
simple defects is enormous, it is smart checklists that have come to the rescue and
saved millions of dollars and saved many lives.

The Checklist Manifesto [4] by Atul Gawande, a surgeon, extols the power of checklist.
He states that any problem can be categorised into simple, complex and complicated,
and how the smart checklists can solve these.
‘Simple’ problems are those that are individualistic in nature with a set of stuff to be
done, while ‘Complicated’ problems implies multiple teams/people coordination/timing
issues, and ‘Complex’ problem is where outcomes are different despite same
application.

Checklists are not mindless compliance
Smart checklists are not about mindless compliance, not about ticking boxes, it is really
about tickling the brain to think better and ensure fault-proofing rapidly. In our industry,
checklists have been seen a cheap brainless activity that is about ticking the checkboxes,
and therefore presumed to be useless.

Smart checklists make you think
To solve complex problems, “push the power of decision making from a central
authority to the periphery, allowing people to make decision and take
responsibility” (Atul Gawande).

The checklist needs to allow for judgement to be used in the tasks rather than enforce
compliance, so that actions may be taken responsibly. Hence, a smart checklist is about
enabling your thinking process by having:
- Set of checks to ensure stupid but critical stuff is not overlooked
- Set of checks to ensure coordination
- To enable responsible actions to be taken without having to ask for authority.

�6

Practical Implementation of Development Code Quality

Good checklists are precise and easy to use in most difficult situations, it does not spell
out everything, but provides reminders of critical & important steps that even highly
skilled professionals would miss.

Checklists seem to defend everyone, a kind cognitive net designed to catch flaws of
memory and attention, a well designed checklist enables one to DO well, SYNC with
others well, and take appropriate ACTions as needed. [5]

“The power of checklists is limited, they help experts remember how to manage a complex process or machine,
make priorities clearer and prompt people to function well as a team. By themselves, however, checklists cannot
make anyone follow them.” (Boorman, Boeing) [4]

We use checklists too, but are we effective?
Do we use checklists for early tests like DevTest? Yes, we do. But from what I have seen
of numerous checklists like code review/UI checklists , it is more often is used like a
compliance assessment, of ticking away a long list of items-to-check for. So this turns to
be a mindless job and suffers poor implementation, as it is most ill suited for smart
validation.

Smart checklist enables developing clean code
So should we really do dev test? Should we not become sensitive and write cleaner
code? Well lean thinking (aka Agile) is of producing less bugs in the first place, not
about testing more.

A ‘Smart DevChecklist’ enables one to precisely accomplish this, to become more
sensitive and written code that certainly does L1 through L4 issues. Remember, this is
the most cost effective method to good quality. Well, a Smart DevChecklist is an efficient
complement to dev test enabling an easy and efficient method to producing great code.

The “Test Pyramid”
‘The Test Pyramid[3] is a metaphor that tells us to group software tests into buckets of
different granularity. It also gives an idea of how many tests we should have in each of
these groups’.

The intention of Test Pyramid is to focus on automation of low level tests that validate
individual components, ones that may be done easily
via non-UI automation.

As much this is very meaningful, choose the right sized
component to make it worth the effort. You should not
unnecessarily automate what can be efficiently
accomplished by a ‘Smart DevChecklist’.

Remember that it is not blind automation that finds defects, it is smart tests (cases really)
that do.

�7

Practical Implementation of Development Code Quality

How to make dev tests effective
“It is not the number of defects that matter, it is the quality of defects that matter”.
During my consulting, I have analysed defects found by the specialised QA team by
‘bucketising’ them into HBT quality L1 ~L8 and have found it interesting that a non-trivial
number falls into the earlier levels L1~L4. What this implies are : (1) Dev tests are not as
leaking basic issues to later stages (2) That QA is not focused on higher levels, pulled
down by lower level issues and is challenged in terms of meaningful QA.

Survey results and my experience
In many companies that I have consulted with, I have noticed that the DevTest (Unit test
as they called) is woefully leaky. I have noticed that at last half the issues found by QA
team could have been found earlier. This simply means that QA is probably doing
others’ job compromising their effectiveness at a higher level.

A few months I conducted a simple survey asking QA folks on their perceived
effectiveness of DevTest. The inference from this two question survey is shown below.

� �

�8

Practical Implementation of Development Code Quality

“The flow”
When we code, it seems natural to test
to ensure it is clean. Here it is,
picturised as two sets of arrows facing
each other with the dynamic test as a
primary means to ferret out the ‘bugs’.

In the world of Agile, with extreme focus on
agility and speed, would it make more
sense to align in the same direction to be
more nimble and speedy?
What if ‘Smart DevChecklist’, is a proactive
DevTest is aligned with Dev, where we do
not ferret out bugs, rather we sensitise
better to constantly de-weed while we code.
That is a “Smart DevChecklIst” at Dev will
enable, to do less and accomplish more.

“The flow” - a state when we harmonise what we do and deliver the best. Flow, the
concept expounded beautifully by Mihaly Csikszentmihalyi in classic book “Flow- The
psychology of optimal experience” [4] states that the state of consciousness called flow
is makes an experience genuinely satisfying. During flow, people typically experience
deep enjoyment, creativity, and a total involvement with life.

So when the act of DevTest is well aligned with Dev and not just seen as a task to be
completed, clean code can happen joyfully. Smart DevChecklist is one of the enablers
of the “Flow”.

A draft of the Smart DevChecklist is listed in the Appendix at the end.

�9

Practical Implementation of Development Code Quality

References
1. HBT Central, hbtcentral.org
2. Martin Fowler, Blog on “UnitTest”, https://www.martinfowler.com/bliki/UnitTest.html,

2009
3. Atul Gawande, “The checklist manifesto- How to get things right”, Penguin books,

2009.
4. Ham Vocke, Blog on “The Practical Test Pyramid”, https://martinfowler.com/articles/

practical-test-pyramid.html, 2018
5. Thiruvengadam Ashok, “Design checklists to ‘Do, Sync & Act’”, https://

www.linkedin.com/pulse/design-checklists-do-sync-act-ashok-t/

�10

STAG Software is a specialist test boutique that focuses
on methods and tools for smart assurance of systems.
Powered by HBT, its scientific test methodology, STAG
offers third party product validation services, advisory
and consulting solutions to enhance organisation test
practices and conducts specialist masterclasses on HBT
to enable smarter testing by software folks.
www.stagsoftware.com

T Ashok is the Founder & CEO of STAG Software.
Passionate about quality, he is the architect of HBT, a
personal scientific test methodology . A strong believer
in opposites, he strives to marry the western system of
scientific thinking with the eastern system of belief and
mindfulness. He is an alumnus of Illinois Institute of
Technology, Chicago & College of Engineering, Guindy.
linkedin.com/in/ashokstag

� �

http://hbtcentral.org
https://www.martinfowler.com/bliki/UnitTest.html
https://martinfowler.com/articles/practical-test-pyramid.html#WhatsAUnit
https://martinfowler.com/articles/practical-test-pyramid.html#WhatsAUnit
https://www.linkedin.com/pulse/design-checklists-do-sync-act-ashok-t/
https://www.linkedin.com/pulse/design-checklists-do-sync-act-ashok-t/
https://www.linkedin.com/pulse/design-checklists-do-sync-act-ashok-t/
http://www.stagsoftware.com
http://linkedin.com/in/ashokstag

Practical Implementation of Development Code Quality

Appendix : Smart DevChecklist

�11

	The problem at large
	Business/economic impact
	Mistaken notions of WB and BB
	Unit testing? Dev testing is a better term
	“Quality Levels” - Defect types matter
	Dev testing - What is the objective?
	So, what levels matter to the developer?
	Is your dev test effective?
	So, what should be really happening in Agile context?
	It is not about doing more, it is about doing less
	Practical implementation of great dev quality
	Hmm.. do we really need unit (dev) tests?
	The power of checklists in other disciplines
	Checklists are not mindless compliance
	Smart checklists make you think
	We use checklists too, but are we effective?
	Smart checklist enables developing clean code
	The “Test Pyramid”
	How to make dev tests effective
	Survey results and my experience
	“The flow”
	References
	Appendix : Smart DevChecklist

