IST Masterclass
Session #5

Exploration phase in detail #2

§
oM,

%

© 2000-21, STAG Software Pvt Ltd
www.stagsoftware.com

http://www.stagsoftware.com

Sprint/Session Plan
Test granularity
Smart checklist

Smart regression

Sprint/Session Plan

Before starting an exploration session, formulate a plan (& revise during session)

Note from a RECON session we would have identified the EUTs.
In case of sprint, we know what user stories are in focus.

Before starting an exploration session, formulate a plan (& revise during session)

Note from a RECON session we would have identified the EUTs.
In case of sprint, we know what user stories are in focus.

- what EUT to focus on
- test or retest(check) from EUT perspective

- forwhat attribute(s) (what-to-test)
- where to perform (env)

Before starting an exploration session, formulate a plan (& revise during session)

Note from a RECON session we would have identified the EUTs.
In case of sprint, we know what user stories are in focus.

- what EUT to focus on
- test or retest(check) from EUT perspective

- forwhat attribute(s) (what-to-test)
- where to perform (env)

EUT- New/Mod/Fix
Interacting EUI
(i.e. impacted)

Before starting an exploration session, formulate a plan (& revise during session)

Note from a RECON session we would have identified the EUTs.
In case of sprint, we know what user stories are in focus.

- what EUT to focus on
- test or retest(check) from EUT perspective

- forwhat attribute(s) (what-to-test)
- where to perform (env)

EUT- New/Mod/Fix
Interacting EUI
(i.e. impacted)

. what test to conduct from TEST TYPE perspective

- where to perform (env) (test-for-what)

Let's say TF1 is focus of a session, then:
Test TF1 (in case New)

Retest TF1 (in case Mod/Fix)

Let's say TF1 is focus of a session, then:
Test TF1 (in case New)

Retest TF1 (in case Mod/Fix)

. affects .

technical FEATURE

Since TF1 affects TF2
we may need to RetestTF2

Let's say TF1 is focus of a session, then:
Test TF1 (in case New)

Retest TF1 (in case Mod/Fix)

URT

Since TF1 affects TF2 Since TF1 is part of UR1
we may need to RetestTF2 we may need to Retest URT

. affects .

technical FEATURE

Let's say TF1 is focus of a session, then:
Test TF1 (in case New)

Retest TF1 (in case Mod/Fix)

URT BF1

Since TF1 affects TF2 Since TF1 is part of UR Since TF1 is part of BF1(UR1)
we may need to Retest TF2 we may need to Retest URT we may need to Retest BF1

. affects .

technical FEATURE

REMEMBER - Design & evaluation in rapid tandem

Scripted check (+some test) Unscripted test

Scripted check
Cripted chec KEY is lightweight

writing, notetaking
Unscripted test

and then do
RECONNAISANCE | EXPLORATION | RECOUP

Test granularity

Scenarios & cases

ENTITY UNDER TEST

Scenario #1 (TS1)

Scenario #2 (TS2)

Scenario #3 (TS3)

On analysis we see THREE distinct behaviours
l.e. test SCENARIOS

Scenarios & cases

ENTITY UNDER TEST

Scenario #1 (TS1)

Scenario #2 (TS2)

Scenario #3 (TS3)

To stimulate Scenario #1, it takes THREE sets
of distinct combination of inputs i.e. test CASES

V16 Y

Scenarios & cases
TEST CASES for

62 1o T ENTITY UNDER TEST

Scenario #1 (TS1)

Scenario #2 (TS2)

Scenario #3 (TS3)

Scenarios & cases
TEST CASES for

e ENTITY UNDER TEST

Scenario #1 (TS1)

Scenario #2 (TS2)

Scenario #3 (TS3)

Test SCENARIOS represent behaviours
Test CASES are stimuli

£

Scenario can be:

SPECIFIC - Sharp & focussed

. . . focus on DO, to check
precise outcomes for a specific behaviour

Scenario can be:

SPECIFIC - Sharp & focussed

. . . focus on DO, to check
precise outcomes for a specific behaviour

GENERIC - Broad & directional
suggest ideas, possibilities, broad actions
on such behaviours/context

suggest, make you think
contextually

Scenario can be:

SPECIFIC - Sharp & focussed

. . . focus on DO, to check
precise outcomes for a specific behaviour

SMART Checklist

Smart Checklist

Checklist is seen as a tool to enforce compliance.
Certainly it adds value by ensuring
we do not miss out on important aspects/activities,
but dulls us and tends to make it boring.

But, is that how it supposed to be ?

V23 Y

As smart individuals,
we don't like checklists.

It somehow feels beneath us to use a checklist,
an embarrassment.

The fear is that checklists enforces
a mindless adherence to protocol.

Well a Smart Checklist goes beyond.

[t goes beyond checking, to
"Have you thought about these?
Could these be applicable?”
making you see possibilities and think.

It is not just ticking off boxes.
It is helping you think about ideas/possibilities.

It is not just ticking off boxes.
It is helping you think about ideas/possibilities.

It acts as a quide/peer/mentor
that catalyses your thinking to do better,
by leveraging prior wisdom/heuristics.

It is not just ticking off boxes.
It is helping you think about ideas/possibilities.

It acts as a quide/peer/mentor
that catalyses your thinking to do better,
by leveraging prior wisdom/heuristics.

Smart checklist goes beyond mere compliance
checking to smart testing.

y 28 Y

Checklists are of THREE flavours:

Simple activity task checklist

containing simple steps not to be missed/skipped

Checklists are of THREE flavours:

Simple activity task checklist
containing simple steps not to be missed/skipped

Coordination activity task checklist
activities done by different roles do not cause issues

Checklists are of THREE flavours:

Simple activity task checklist
containing simple steps not to be missed/skipped

Coordination activity task checklist

activities done by different roles do not cause issues

°Comp|ex problems checklist
enable ideation, assist in making choices and help you do

On Oct 30, 1985, a massive plane that could carry 5x
bs roared and lifted off from an airportin

more bomn

Dayton O

nio, and then crashed.

Reason cited was "Pilot error”. A newspaper reported
“this was too much airplane for one man to fly".

Boeing the maker of this plane nearly went bankrupt.

On Oct 30, 1985, a massive plane that could carry 5x
more bombs roared and lifted off from an airport in
Dayton Ohio, and then crashed.

Reason cited was "Pilot error”. A newspaper reported
“this was too much airplane for one man to fly".

Boeing the maker of this plane nearly went bankrupt.

So, how did they fix this issue?
By creating a pilot's checklist, as flying a new plane was
too complicated to be left to the memory of any one
person, however expert.

Before Takeoff - Run-Up
On Oct 30, 1985, a massive p\ane that could carry Ox l. Cabin Doors and Windows - Closed & Locked

more bombs roared and lifted off from an airport in Parking Brake - Set
Day’[on Ohio. and then crashed Flight Controls - Free & Correct

o 0N

Flight Instruments - Set
8 od et "] Fuel Selector Valve - ON - Fullest Tank
eason cited was "rFiloterror. A newspaper reporte 6 Elevator Trim - Takeoff

“this was too much airplane for one man to fly". 7. Mixture - Rich or As Required

8. Throttle - 2000 RPM

o

Boeing the maker of this plane nearly went bankrupt. (a) Magnetos - Check

(b} Carburetor Heat - Check
(c}) Engine Instruments & Ammeter - Check

(d) Suction Gauge - Check 57=0.1

9. Throttle - Idle, then 1000 RPM

So, how did they fix this issue?
By creating a pilot's checklist, as flying a new plane was i Radics Qi
too complicated to be left to the memory of any one 11; Transpandes < Set; then Altitide
person, however eXpert. 12. Throttle Friction Lock - Adjust

13. Fuel Pump - ON
14, Lights - As Required

15. Parking Brake - Release

Before Takeoff - Run-Up
On Oct 30, 1985, a massive p\ane that could carry Ox l. Cabin Doors and Windows - Closed & Locked

more bombs roared and lifted off from an airport in Parking Brake - Set
Day’[on Ohio. and then crashed Flight Controls - Free & Correct

o 0N

Flight Instruments - Set
8 od et "] Fuel Selector Valve - ON - Fullest Tank
eason cited was "rFiloterror. A newspaper reporte 6 Elevator Trim - Takeoff

“this was too much airplane for one man to fly". 7. Mixture - Rich or As Required

8. Throttle - 2000 RPM

o

Boeing the maker of this plane nearly went bankrupt. (a) Magnetos - Check

(b} Carburetor Heat - Check
(c}) Engine Instruments & Ammeter - Check

(d) Suction Gauge - Check 57=0.1

9. Throttle - Idle, then 1000 RPM
10. Radios - Set

So, how did they fix this issue?
By creating a pilot's checklist, as flying a new plane was

too complicated to be left to the memory of any one 11, Trasspondes < Set; then Altituide
person, however expert. 12. Throttle Friction Lock - Adjust
13. Fuel Pump - ON
RESULT : 1.8 million miles without one accident! 14. Lights - As Required

15. Parking Brake - Release

Problem of extreme complexity

The field of medicine
has 13000+ diseases, syndromes, injury types.
(i.e. 13000 ways a body can fail)
and 6000 drugs, 4000 medicines & surgical procedures
each with different requirements, risks & considerations.

Problem of extreme complexity

The field of medicine
has 13000+ diseases, syndromes, injury types.
(i.e. 13000 ways a body can fail)
and 6000 drugs, 4000 medicines & surgical procedures
each with different requirements, risks & considerations.

Checklists seem to provide against such failures and
instil a kind of discipline of higher performance

Checklists seem to provide against such failures and
instil a kind of discipline of higher performance

case study #1
Tackling central line infections in ICU using checklist
prevented 43 infections & 8 deaths and saved USD 2M
(Peter Provonostin 2001)

Checklists seem to provide against such failures and
instil a kind of discipline of higher performance

case study #1
Tackling central line infections in ICU using checklist
prevented 43 infections & 8 deaths and saved USD 2M
(Peter Provonostin 2001)

case study #2
In a bigger implementation “Keystone Initiative” (2006)
involving more hospitals of 18 month duration,
USD 17M saved, 1500+ lives saved

Checklists seem to provide against such failures and
instil a kind of discipline of higher performance

case study #1
Tackling central line infections in ICU using checklist
prevented 43 infections & 8 deaths and saved USD 2M
(Peter Provonostin 2001)

case study #2
In a bigger implementation “Keystone Initiative” (2006)
involving more hospitals of 18 month duration,
USD 17M saved, 1500+ lives saved

Higher baseline performance is what a smart checklist can do.

Higher baseline performance is what a smart checklist can do.

Surgical Safety Checklist

(with at least nurse and anaesthetist)

Has the patient confirmed his/her identity,
site, procedure, and consent?

Yes
Is the site marked?
1 Yes
Not applic;ble
Is the anaesthesia machine and medication
check complete?
Yes
Is the pulse oximeter on the patient and
functioning?
| Iyee

Does the patient have a:

Known allergy?
No
Yes

Difficult airway or aspiration risk?
J No
Yes, and equipment/assistance available

Risk of >500ml blood loss (7ml/kg in children)?
No

Yes, and two IVs/central access and fluids
planned

(with nurse, anaesthetist and surgeon)

Confirm all team members have
introduced themselves by name and role.

Confirm the patient’s name, procedure,
and where the incision will be made,

Has antibiotic prophylaxis been given within
the last 60 minutes?

Yes
Not applicable

Anticipated Critical Events

To Surgeon:
What are the critical or non-routine steps?
How long will the case take?
What is the anticipated blood loss?

To Anaesthetist:
Are there any patient-spedific concerns?

To Nursing Team:

Has sterility (including indicator results)
been confirmed?

Are there equipment issues or any concerns?
Is essential imaging displayed?

Yes
Not applicable

This checklist is not intended to be comprehensive. Additions and modifications to fit local practice are encouraged,

Y 42 Y

A Worsd Altarce o Safer Haln Care

e \ P ey o PSR iy
4 N r.s ' 7. ¢3
yEO N

ot
’
wds e e et rdeddt oo A Moo,

(with nurse, anaesthetist and surgeon)

Nurse Verbally Confirms:
The name of the procedure

Completion of instrument, sponge and needle
counts

Specimen labelling (read specimen labels aloud,
including patient name)

Whether there are any equipment problems to be
addressed
To Surgeon, Anaesthetist and Nurse:

What are the key concerns for recovery and
management of this patient?

0 WHO, 2009

SMART Checklist

IS one
that respects you as smart person

SMART Checklist

IS one
that respects you as smart person
gives you hints, not bore you

SMART Checklist

IS one

that respects you as smart person
gives you hints, not bore you

is crisp and clear in what to do

SMART Checklist

IS one

that respects you as smart person
gives you hints, not bore you

is crisp and clear in what to do

IS quick and painless to use

SMART Checklist

IS one

that respects you as smart person
gives you hints, not bore you

is crisp and clear in what to do

IS quick and painless to use

is not a form to fill &file

SMART Checklist

IS one

that respects you as smart person
gives you hints, not bore you

is crisp and clear in what to do

IS quick and painless to use

is not a form to fill &file

...helps you build a better habit!

Smart Checklist Intents

Smart Checklist Intents

Smart Checklist Intents

Smart Checklist design tips

1
SET OBJECTIVE
State objective of smart checklist.
See it as a set of intents to accomplish.

Smart Checklist design tips

1
SET OBJECTIVE
State objective of smart checklist.
See it as a set of intents to accomplish.

2

STATE INTENT
CHECK known for CONFORMANCE (focus)

enable PROBING into KNOWN (question)
enable DISCOVERY of UNKNOWN (ideate)

Smart Checklist design tips

1
SET OBJECTIVE
State objective of smart checklist.
See it as a set of intents to accomplish.

2

STATE INTENT
CHECK known for CONFORMANCE (focus)

3

IDENTIFY ACTION FOR INTENT
as STIMULI to inject

as CRITERIA to check for
as ISSUE to look for

enable PROBING into KNOWN (question)
enable DISCOVERY of UNKNOWN (ideate)

Smart Checklist design tips

1
SET OBJECTIVE
State objective of smart checklist.
See it as a set of intents to accomplish.

2

STATE INTENT
CHECK known for CONFORMANCE (focus)
enable PROBING into KNOWN (question)
enable DISCOVERY of UNKNOWN (ideate)

3

IDENTIFY ACTION FOR INTENT
as STIMULI to inject

as CRITERIA to check for
as ISSUE to look for

4
EXPRESS ACTION

asal0-DO
as a QUESTION

as a HEURISTIC
as an IDEA/SUGGESTION

Smart Checklist design tips

1

SET OBJECTIVE
State objective of smart checklist.

See it as a set of intents to accomplish.

2

STATE INTENT
CHECK known for CONFORMANCE (focus)
enable PROBING into KNOWN (question)
enable DISCOVERY of UNKNOWN (ideate)

4
EXPRESS ACTION

asal0-DO
as a QUESTION

as a HEURISTIC
as an IDEA/SUGGESTION

3

IDENTIFY ACTION FOR INTENT
as STIMULI to inject
as CRITERIA to check for
as ISSUE to look for

S

WRITE ACTION
using IMPERATIVE style

using INTERROGATIVE style
using DECLARATIVE style

AmIOK?

Inputs ok?
Limits
Type
Defaults

Outputs ok?
Stored fine
No duplicates

Appropriate msg

Am | ROBUST? Handled errors/EXCEPTIONS well?

SMARTDEVTEST CHECKILIST

Bad INPUTS rejected?
SCREEN/UI well done?

Screen ok?
Alignment
Consistency
Dependencies
Colours fine

Actions ok?
Navigation
Default
Confirmation

DISPLAYS well?
All TEXT fine?

Display ok?
Responsive
Orientation
Resolution

All OUTPUTS checked?
Are ACTIONS to do fine?

Not affected by DEPENDENCIES?

“l am fine"”

Text ok?
Spelling
Grammar
Meaningful
Actionable

“| am resilient”

Work on different ENVIRONMENTS?

Errors handled?
Connection loss
Low resources
Services down

Env friendly?
Diff browsers
Diff resolutions
Diff devices
Diff version OS/SW..

Used/Released RESOURCES?
SETTINGS/CONFIG change side effects?

Will system attributes be met?

Attributes ok?
Security
Large volume
Basic performance

Dependencies ok?
In common lib
In shared data
memory
files/DB
Ext settings/config

DATA change side effects?
INTERFACE changes side effects?

“lam a good citizen

| am not messing up other's code via side effects due to changes that
| may have made in my SETTINGS/ CONFIG/DATA/ INTERFACE

Resource usage ok? SETT./CFG side effects?

DATA side effects? I/F side effects?

Formats

No leaks
memory
handles

App settings
Env. settings
Permissions

0S resources

No tmp files

Types
Defaults
Width

© 2018 STAG Software Private Limited

APl parameters
Msg parameters
DB tables

File contents

Am | OK 2 Bad INPUTS rejected? DISPLAYS well? All OUTPUTS checked? o am fine"
) SCREEN/UI well done? All TEXT fine? Are ACTIONS to do fine?

Inputs ok? Screen ok? Display ok? Text ok?

Limits Alignment Responsive

Type Consistency Orientation

Defaults Dependencies Resolution
Colours fine

Spelling
Grammar
Meaningful
Actionable

Outputs ok? Actions ok?
Stored fine Navigation
No duplicates Default

Appropriate msg Confirmation

Am | ROBUST? Handled errors/EXCEPTIONS well? Not affected by DEPENDENCIES? “] am resilient”
Work on different ENVIRONMENTS? Will system attributes be met?

Errors handled? Env friendly? Dependencies ok? Attributes ok?
Connection loss Dift browsers In common lib Security
Low resources Diff resolutions In shared data Large volume
Services down Diff devices memory Basic performance
Dift version OS/SW.. files/DB
Ext settings/config

Used/Released RESOURCES? DATA change side effects?

2
Are you OKZ erriNGs/CONFIG change side effects? INTERFACE changes side effects?

"l am a good citizen”

| am not messing up other's code via side eftects due to changes that
| may have made in my SETTINGS/ CONFIG/DATA/ INTERFACE

Resource usage ok? SETT./CFG side effects? DATA side effects? I/F side effects?
No leaks App settings Formats AP| parameters
memory Env. settings Types Msg parameters
handles Permissions Defaults DB tables
0S resources Width File contents
No tmp files

SMARTDEVTEST CHECKILIST

Bad INPUTS rejected?
SCREEN/UI well done?

AmIOK?

Inputs ok? Screen ok?
Limits Alignment
Type Consistency
Defaults Dependencies

Colours fine

Outputs ok?
Stored fine

Actions ok?
Navigation

No duplicates Default
Appropriate msg

Confirmation

Am | ROBUST? Handled errors/EXCEPTIONS well?
" Work on different ENVIRONMENTS?

Errors handled?
Connection loss

Env friendly?
Diff browsers
Diff resolutions
Diff devices
Diff version OS/SW..

Low resources
Services down

Used/Released RESOURCES?

2
Are you OK: SETTINGS/CONFIG change side effects?

DISPLAYS well?
All TEXT fine?

All OUTPUTS checked?

Are ACTIONS to do fine? lam fine

Display ok? Text ok?
Responsive Spelling
Orientation
Resolution

Grammar
Meaningful
Actionable

Not affected by DEPENDENCIES?
Will system attributes be met?

“l am resilient”

Dependencies ok? Attributes ok?
In common lib Security
In shared data
memory
files/DB
Ext settings/config

Large volume
Basic performance

DATA change side effects?

INTERFACE changes side effects? | am a good citizen

| am not messing up other's code via side effects due to changes that
| may have made in my SETTINGS/ CONFIG/DATA/ INTERFACE

SETT./CFG side effects?
App settings
Env. settings
handles Permissions
0S resources
No tmp files

Resource usage ok?
No leaks
memory

© 2018 STAG

DATA side effects? I/F side effects?
Formats API parameters
Types Msg parameters
Defaults DB tables
Width File contents

oftware Private Limited

V61)

Design Assessment Checklist

DOC LINKS: are all info related to
the int/ext links in the document?

Internal references ok?
External references available?

DESIGN ELEMENTS: are functions of
design elements clear?

objective of element clear?

logic/algorithm clear?

logic will meet functionality?

iInput-output data clear
format, values, types

INTERACTIONS: assess interactions
between subsystems/components

Order of invocation
Interface data

data types,

formats
Responses clear in send-receive?
Blocking/ Timeout?
Non-blocking/Callback
Side effects?

(DRAFT)

COVERAGE: quick assessment of
requirements/attributes covered

All functional requirements covered?
Expected aftributes designed for?

INTERFACE: are the interfaces
between elements clear?

Interfaces appropriate?

Interface spec (reqfresp) well defined?
Interface data spec non-ambiguous?
Interface visibility appropriate?
Interfaces secure?

ERROR HANDLING: how robust is
the design in handling exigencies

What exigencies to handle?
Detensive? i.e. bad data rejected
Precondition checks?
Faults anticipated?
Support for

supportability

testability

Smart Regression

the challenge of CHANGE

© what to retest?

the challenge of CHANGE

© what to retest?

© how to retest efticiently?

the challenge of CHANGE

© what to retest?

© how to retest efticiently?

© what not-to retest?
N

A simple model ot "WHAT-is-TESTING"
to TEST/(RE)TEST smartly

DEPLOYS WELL

ATTRIBUTES MET

WORKS ON ALLENV

BUSINESS FLOWS CLEAN

FEATURES CLEAN

INTERNALS CLEAN

Ul INTERFACE CLEAN

INPUTS CLEAN

L8

L7

L6

LS

L4

L3

L2

L1

test-for-what

E1

E2 E3 E4
what to test

Testing is a cartesian product of
what-to-test

&
test-for-what

DEPLOYS WELL

ATTRIBUTES MET

WORKS ON ALLENV

BUSINESS FLOWS CLEAN

FEATURES CLEAN

INTERNALS CLEAN

Ul INTERFACE CLEAN

INPUTS CLEAN

L8

L7

L6

LS

L4

L3

L2

L1

test-for-what

E

E2 E3 E4
what to test

Testing is a cartesian product of

what-to-test structural
COMPONENT

&

test-for-what tachnical

FEATURE

business

REQUIREMENT

user
FLOW

WHAT IS THE
EUT?

DEPLOYS WELL
ATTRIBUTES MET
WORKS ON ALLENV
BUSINESS FLOWS CLEAN
FEATURES CLEAN
INTERNALS CLEAN

Ul INTERFACE CLEAN

INPUTS CLEAN

L8

L7

L6

LS

L4

L3

L2

L1

test-for-what

E

E2

E3

E4

what to test

Testing is a cartesian product of

what-to-test
&
test-for-what

deploys well?
attributes met?
works on all env?
business flows clean?
features clean?
internals clean?

Ul interface clean?
inputs clean?

CLEANLINESS CRITERIA
to TEST FOR?

structural
COMPONENT

technical
FEATURE

business

REQUIREMENT

user
FLOW

WHAT IS THE
EUT?

DEPLOYS WELL

ATTRIBUTES MET

WORKS ON ALLENV

BUSINESS FLOWS CLEAN

FEATURES CLEAN

INTERNALS CLEAN

Ul INTERFACE CLEAN

INPUTS CLEAN

L8

L7

L6

LS

L4

L3

L2

L1

test-for-what

E

E2 E3 E4
what to test

Regression testing is then

what-to-(RE)test
X
(RE)test-for-what

structural
COMPONENT

technical
FEATURE

business
REQUIREMENT

user
FLOW

WHAT IS THE
EU(RE)T?

DEPLOYS WELL

ATTRIBUTES MET

WORKS ON ALLENV

BUSINESS FLOWS CLEAN

FEATURES CLEAN

INTERNALS CLEAN

Ul INTERFACE CLEAN

INPUTS CLEAN

L8

L7

L6

LS

L4

L3

L2

L1

test-for-what

E

E2 E3 E4
what to test

Regression testing is then

what-to-(RE)test
X
(RE)test-for-what

deploys well?
attributes met?
works on all env?
business flows clean?
features clean?
internals clean?

Ul interface clean?
inputs clean?

CLEANLINESS CRITERIA
to (RE)TEST FOR?

structural
COMPONENT

technical
FEATURE

business
REQUIREMENT

user
FLOW

WHAT IS THE
EU(RE)T?

SMART approach to tackling
the challenge of CHANGE

© what to retest?

Fault propagation analysis

© how to retest efticiently?

Automation analysis

© what not-to retest?

Yield analysis

SMART approach to tackling
the challenge of CHANGE

what may be the affected entities that need to be (re)tested?

© what to retest?

what criteria of these entities are to be (re)tested for?

L4

L3

L2

L

Given an entity (say, an
component) that has
been modified

1. Analyze if this could affect any
of its other criteria ?
e.g. performance?

L4

L3

L2

L

Given an entity (say, an
component) that has
been modified

1. Analyze if this could affect any
of its other criteria ?
e.g. performance?

2. Next analyze if this could affect
any other similar entity (say
component) and what criteria
of that entity

Given an entity (say, an
component) that has
been modified

. 1. Analyze if this could affect any
of its other criteria ?
e.g. performance?
13
2. Next analyze if this could affect
9 any other similar entity (say
component) and what criteria
of that entity
L1

3. Finally analyze which of the
larger entity (say feature) that
uses this entity could be
affected and also the potential
affected criteria

GIVEN THE FOLLOWING AID #1°
LEVELS OF QUALITY : ' i |
> OFQL FAULT PROPAGATION ANALYZER Given an entity (say, an component)

Who is affected? WHAT-to-RETEST 111 .
DT i, thathas been modified
I
n_ 1. Ana\yze if this could dny Of IS
WORKS ON ALL ENVIRONMENTS .)
Analyse fault propagatlon level-wise Other Crlterla eg performance?
n ~ within an entity (1)
n_ - across entities (2,3)
FEATURES CLEAN - .
2. Next analyze if this could affect
ﬂ any other similar entity (say

Ul INTERFACE CLEAN
INPUTS CLEAN

component) and what criteria of
that entity

To enable focused
purposeful tests that
validates correctness of
inputs, interfaces, going on
to features & flows and
then correctness on all
environments, finally onto
system attributes and
deployment.

3. Finally analyze which of the
arger entity (say feature) that
uses this entity could be affected
and also the potential affected
criteria

SMART approach to tackling
the challenge of CHANGE

© what to retest?

Fault propagation analysis

© how to retest efticiently?

well, automating execution is useful here, challenge is scripts to be in sync with scenarios

ensure that scenarios are segregated by levels so that scripts are shorter and maintainable

e

INTERNALS CLEAN
Ul INTERFACE CLEAN

n FEATURES CLEAN
n INPUTS CLEAN

Given test scenarios/cases for an
entity that does a variety of
validations

“LEVELISE" them

Segregate them into quality levels so
that that they can be automated
easily ensuring that scripts are
simple and maintainable.

GIVEN THE FOLLOWING AID #2:
LEVELS OF QUALITYS AUTOMATION FITNESS ANALYZER

Are your test cases well structured to enable rapid
DEPLOYS WELL automation/maintenance?

ATTRIBUTES MET

WORKS ON ALL ENVIRONMENTS

TC well structured into levels.

e —> FOCUSED TEST CASES

very FIT for automation

BUSINESS FLOWS CLEAN

FEATURES CLEAN

Segregate them into quality levels so
that that they can be automated

INTERNALS CLEAN

Ul INTERFACE CLEAN

TCatlves L4 mied . easily ensuring that scripts are
INPUTE CLEAN = >SY$T;IV} TEST inFludes .D;EV TEST . . .
ol org sps il simple and maintainable.

To enable focused
purposeful tests that
validates correctness of
inputs, interfaces, going on
to features & flows and
then correctness on all
environments, finally onto
system attributes and
deployment.

not FIT for automation

TCat levels L4-L7 mixed up.
=>TCvalidates FEATURES, FLOWS and
ATTRIBUTES

Scripts may do too much, fragile

high maintenance

not FIT for automation

*TC=Test Case

SMART approach to tackling
the challenge of CHANGE

© what to retest?

Fault propagation analysis

© how to retest efticiently?

Automation analysis

e W h a't n Ot'to retest? as testing progresses, test cases don't uncover defects

‘ track test cases that do not yield defects , to not execute?

e

INTERNALS CLEAN
Ul INTERFACE CLEAN

n FEATURES CLEAN
n INPUTS CLEAN

C1

test cycles

C2

C3

C4

*TC=Test Case

Track test cases that do NOT yield
defects each cycle

Normalise defect/TC* ratio for
each cycle

Analyse by levels to see yield wrt
time

GIVEN THE FOLLOWING AID #3:
LEVELS OF QUALITY : VIELD ANALYZER

How is the test yield over time?
n yield = outcome/effort i.e #defects/#TC_Executed
n
. o
n Normalise defect/TC* ratio for each cycle
and analyse by levels to see yield wrt time.

test cycles

Ul INTERFACE CLEAN
INPUTS CLEAN

To enable focused
purposeful tests that
validates correctness of
inputs, interfaces, going on
to features & flows and
then correctness on all
environments, finally onto
system attributes and
deployment.

L4

5

*TC=Test Case

Track test cases that do NOT yield
defects each cycle

Normalise defect/TC* ratio for
each cycle

Analyse by levels to see yield wrt
time

AID #1:

FAULT PROPAGATION ANALYZER

Who is affected? WHAT-to-RETEST
What is affected?-RE-TES T for WHAT?

Analyse fault propagation level-wise
- within an entity (1)
- across entities (2,3)

AID #2:
AUTOMATION FITNESS ANALYZER

Are your test cases well structured to enable rapid
automation/maintenance?

TC well structured into levels.

G => FOCUSED TEST CASES

very FIT for automation

TC at levels L1-L4 mixed up.
=>SYSTEMTEST includes DEV TEST
Potentially long scripts, brittle,

high maintenance

not FIT for automation

TC at levels L4-L7 mixed up.
=>TCvalidates FEATURES, FLOWS and
ATTRIBUTES

Scripts may do too much, fragile

high maintenance

not FIT for automation

*TC=Test Case

AID #3:
YIELD ANALYZER

How is the test yield over time?
yield = outcome/effort i.e #defects/#TC_Executed

Normalise defect/TC* ratio for each cycle
and analyse by levels to see yield wrt time.

test cycles
C1 C2 C3 C4

SMART approach to tackling
the challenge of CHANGE

© what to retest?

Fault propagation analysis

© how to retest efticiently?

Automation analysis

© what not-to retest?

MEERETNE

© 2000-21, STAG Software Pvt Ltd
www.stagsoftware.com

http://www.stagsoftware.com

