
1

TABLE OF CONTENTS

THE CURRENT CONTEXT...5

STATE OF TESTING PRACTICE..5

INDUSTRY CHALLENGES IN QA..6
P1-Grappling with too much testing?..6

P2-Choked by bugs?..7

P3-Challenged by test adequacy?..8

P4-Troubled by development test?...9

P5-Weighed down by automation?..10

P6-Are your quality metrics insightful?...12

INTRODUCING SMARTQA..13

SMARTQA BASED SOLUTION SUGGESTIONS...15
S1-Focus on direction first, then on speed... 15

S2-Focus on practice & process, then tools...15

S3-Focus on scenarios, then automated scripts...17

S4-Focus on writing less, to do more..20

S5-Focus on test potency, not quantity.. 22

S6-Focus on quality of issues, not quantity..24

S7-Focus on the key measure- “Escapes”..26

S8-Preempt issues, assure not just detect.. 28

S9-Detect early without disrupting rhythm (text TBD)....................................30

S10-Characterise defects first, then do RCA.. 30

S11-Unshackle capacity to handle regression.. 31

S12 (#5) Exploit intelligence, artificial and human..34

S13 (#11) Expect more out of a professional tester.. 36

Introducing HyBIST - a method to do SmartQA.................................. 37

3

The SmartQA Promise... 38

Case Studies.. 38

Embracing SmartQA...38

Preface

This crisp book takes a hard look at challenges and problems senior

engineering managers face in QA and testing and presents a refreshing and

sometimes contrarian approach to solutions. It examines the practice(s),

mindset(s), and techniques followed and presents interesting ideas based on

problem-solving, culture and mindset, philosophy, and thinking styles, in

addition to a scientific approach to test engineering.

5

do SmartQA. The HyBIST Approach.

THE CURRENT CONTEXT

In these times where systems are complex and machines intelligent,

businesses impatient and timelines shortened, customers demanding and

work unending, technology expansive and engineering capacity limited, it is

only prudent to be smarter to do less and accomplish more.

Software development has significantly evolved and matured, but the QA

practice seems archaic, relying solely on automated testing without

embracing a comprehensive approach.

The modern development approach is rapid leveraging code via frameworks,

components whereas testing seems to be stuck in applying basic principles or

relying heavily on experience. The focus is skewed towards validation via

automated tests, focussed less on intellectual practice to digging in and

questioning, to preempt or detect early, to go beyond bug finding towards

suggesting, ideating and delivering higher value.

STATE OF TESTING PRACTICE

Quality seems to be caught up between do-more/test-continuously on one

side and finding issues earlier/assure on the other side, without a clue on

how to marry them in simple terms. There seems to be extreme reliance on

rote continuous testing via automation rather than smart assurance

 exploiting human intelligence.

Some common observations that stunt the practice are:

7

do SmartQA. The HyBIST Approach.

- rely on experience for effective testing

- most often the approach is black box

- more of check not as much test (compliance vs bug-seeking)

- unclear partitioning/objectives of dev & QA(system) test

- emphasis on scripted test cases

- template-driven test case design limiting effectiveness

- focus on code validation, not much as questioning/exploring

- effectiveness(speed) usurps effectiveness(test quality)

8

do SmartQA. The HyBIST Approach.

INDUSTRY CHALLENGES IN QA

P1-Grappling with too much testing?

“We are doing a lot of testing, consuming significant effort/time. Yet, we have

customer issues that weigh us down. In today’s rapid dev model, automation

seems to be in catch up mode, another backlog to handle now” a Senior

Engineering Director of a global product company said. How can we do

better? Is automation the only way forward? What can we do to test smarter?

I have seen QA doing work that Dev Test should have covered, writing

detailed test documentation and relying on scripted tests, doing too much

regression creating a large automation backlog due to poor test organisation,

as key reasons that saps capacity and effectiveness of QA.

Test automation is certainly a way forward, but after enhancing effectiveness

via SmartQA. Sharpen QA focus, strengthen scenarios, don’t do others work,

and then automate is what SmartQA is.

9

do SmartQA. The HyBIST Approach.

P2-Choked by bugs?

“Despite all the testing we do, field issues do not seem to abate. Sometimes it is

a few serious issues that cause us to react intensely, sometimes it is a bunch of

simple issues that make us consume bandwidth. Clearly the backlog is building

up, with debts to be serviced, straining capacity to deliver new ideas.”

This is what I hear from senior engineering managers of product companies.

How do you go about fixing this? Well, I have seen a flurry of activity to

identify root cause(s) and address them. They help to set focus, but fizzle out.

Analysing 'quality of issues’ to understand types of issues that leak enables

practical actions, rather than jumping into the ‘reason of why’ (root cause).

Smart QA it is, to do failure analytics differently, to ‘tighten the purse’.

10

do SmartQA. The HyBIST Approach.

Bugs are indeed a serious drain on engineering capacity, forcing one to fix

issues at the expense of building revenue yielding new features. Smart failure

analytics visualises problems well, enabling clear actions to strengthen

practice and reduce debt significantly.

P3-Challenged by test adequacy?

“Our product is complex and used in myriad interesting ways in different

environments. We seem to be discovering a variety of issues continually on the

field. Wonder if our tests and test cases are adequate? We do have a lot of test

cases, but are we effective?” asked an Engineering Director of a global product

company.

How can I tighten the noose? How can I enhance the filter?

Most often I have seen as practice, that test scenarios/cases are designed

solely based on one’s experience. This, though valuable, poses a challenge -

“How do I logically conclude that it is sufficient, adequate?”

Well, one cannot surmise that all scenarios can indeed be thought of a-priori;

as during the act of execution, we do discover potentially interesting failure

cases. The intent to question completeness however is very useful, as it

allows one to question deeply, which really is what brilliant testing is all

about.

11

do SmartQA. The HyBIST Approach.

A behaviour driven approach to test

design ensures a mindset to extract

conditions from requirements,

understand perturbations from other

parts of the system leading to ‘robust

test design’. After all, a good filter

tightens the noose!

P4-Troubled by development test?

“Yes, we know that doing early dev test is superior. Despite requisite focus, we

don’t seem to be effective. QA finds issues that can be found earlier, wasting

bandwidth, missing out issues in real life user flows.”

DevTest is strengthened if specific types of issues were targeted, and these

could be detected via DevTest, code review or smart checklists.

A typical problem that I have seen is the lack of clear partitioning of what

issues to focus on, in DevTest and SystemTest. The result - a porous gate

between early and late stage testing, resulting in high internal defect leakage,

strangling effectiveness of QA. Automation of DevTest is powerful, potent if

DevTest cases are sharp and focussed.

12

do SmartQA. The HyBIST Approach.

It is paramount to ensure that the approach does not create more work for

developers or upset the development rhythm. Smart Checklist is a brilliant

tool for this. (The book “The Checklist Manifesto “by Atul Gawande is an

illuminating read).

We have seen remarkable improvement in overall quality via “shift-lifting”,

reducing internal leakage by well over 50%. In today’s age of rapid

development and frequent releases, strengthening early DevTest has a

multi-fold effect on product QA.

13

do SmartQA. The HyBIST Approach.

P5-Weighed down by automation?

“As we embrace faster release cycles, testing has become a bottleneck. Yes, we

have embraced automation as the way forward. We have a huge regression

suite and therefore a big backlog for automation, a tough balance to speed up

and yet maintain the fast paced release rhythm. What can I do?”

Automated tests are great to monitor a system’s health. Rather than just use

regression as the candidate for automation, key flows that signify the pulse of

a system's health are superior, don’t you think? And, this won’t create a huge

backlog for automation, right?

Most often I have seen automation embraced as

the solution to speed up testing. Conceptually

correct it is, the problem is - what makes it

worth the while to automate? Automated tests

have to be in sync with the product and are

therefore not a one time effort.

Choosing the right ones implies, it needs to be

at the level of user flow, and be a clear indicator of health. Unless test

scenarios are well structured and organised, choosing the right ones will turn

14

do SmartQA. The HyBIST Approach.

out to be difficult, and ultimately weigh you down. It then becomes a pursuit

of catching up with automation rather than making it work for you.

The goal is not 100% automation, it really is no leakage of defects. Automated

tests are really ‘checks’ that assess key paths for good health (correctness)

while intelligent human tests are focused on finding issues(robustness). A

harmonious balance between these two enables clean code to be delivered

without being weighed down by automation.

P6-Are your quality metrics insightful?

“We track a lot of metrics related to progress of development and quality every

15

do SmartQA. The HyBIST Approach.

sprint, like backlogs, technical debt, velocity, task status etc. What is not very

evident is the ‘quality of movement’ i.e. how well done, so that we create less

debt as we move.” How can I get a better insight of the quality of tests done

and a more objective measure of product quality?

Extrinsic metrics are easier to measure and give visibility of direction,

progress, speed and external feel of product quality. Intrinsic metrics are

deeper, harder to measure but can give greater insight into the quality of

work. Measuring this requires a good structure and organisation of test

artefacts. The benefit - a greater insight into effectiveness of outcome and

therefore lower technical debt & greater acceleration, don’t you think?

Metrics can be classified as measuring work progress, work quality, product

quality and practice quality. Except for the first one on work progress where

we have a lot of measures facilitated by project and test management tools,

the others depend on test organisation and clarity of types of issues to

uncover. ‘Quality Levels’ based on HBT (Hypothesis Based Testing) provides a

strong foundation for these, enabling you to assess potential test

effectiveness, judge product quality objectively and fine tune practice quality .

16

do SmartQA. The HyBIST Approach.

INTRODUCING SMARTQA

Testing is not about merely checking for compliance, nor is it just about

finding issues with delivered code; it is to be curious about what may be

intended by the producer, what may be expected by consumers, the

correctness and incorrectness of what is present, the identification of what is

probably needed but missing, and the plain inquisitiveness resulting in

interesting questions that enable deepening the understanding, ultimately

delivering value in a larger business context by this act. It is no longer just a

physical act of validation of code, but a mental analysis and corroboration of

early-stage spec, design, and code so that one may preempt issues rather

than detect them later or painfully miss them.

SmartQA is about "doing less and accomplishing more”.

17

do SmartQA. The HyBIST Approach.

18

do SmartQA. The HyBIST Approach.

SMARTQA SUGGESTIONS

(Suggestions to - do less, do better, do faster and don't do.)

S1-Focus on direction first, then on speed

S2-Focus on practice & process, then tools

Shrinking timelines is a challenge to testing in today’s rapid development

cycles, and the typical approach to speeding them up is to automate them. It

helps to do more in less time, but it is to regress rather than uncover newer

issues and requires effort to build and keep in sync.

Is speeding up via automation the only approach to doing more? No.

Is it about doing more or less in a given amount of time? Both, right? The

former is about being efficient, while the latter is about effectiveness.

Efficiency is about speeding up the act of doing something using technology

or automation, and being effective is about improving outcomes by enhancing

personal practice via superior problem solving. What about consistency?

Well, it is about being reliable in the process of doing it. Summarising,

effectiveness is related to personal practice, while efficiency is related to

both.

19

do SmartQA. The HyBIST Approach.

So, in addition to embracing automation, it is necessary to focus on the core,

the personal practice. Make it smarter by equipping testers with

problem-solving methods to enhance their effectiveness so that (1) issues are

found earlier and (2) issues are not missed out to cause test debt. The first

(1) is always on the speed of doing. Given that we are building products

much faster, it is natural to expect testing to be faster, too. First examine what

it takes to do things quickly. Speed is about doing things quickly, with

minimal rework. After all, to do things fast, we must only focus on what needs

to be done and not be slowed down by the baggage of rework. So what does it

take to do it quickly? It is about doing less to be able to do more.

What does minimal rework mean? It is about doing whatever we can early to

prevent or detect an issue and doing what we're doing now. So efficiency is

not just about accelerating what we are doing now. It also requires

effectiveness. Effectiveness implies doing less and doing whatever we do very

well. You become efficient in doing things through process or practise, have

better skills, or use technology to accelerate the work i.e. automation.

Now let us look at consistency. Consistency is about delivering the same or

similar results with similar inputs; it can be considered a function of

well-established processes and practices.

20

do SmartQA. The HyBIST Approach.

Now, does consistency play a role in efficiency and effectiveness? Yes. If we

can be consistent by doing certain things that are fundamentally rote, then

we will not spend unnecessary time thinking about it. If doing things is

mechanical, then technology helps to automate these to reduce the work.

When effectiveness, efficiency and consistency are in harmony, it is a brilliant

balance, SmartQA.

S3-Focus on scenarios, then automated scripts

In today's world, we use the words manual and automated. There is serious

emphasis on automated testing, as the general belief is that automation is key

to delivering great-quality software. Is it true? It enables frequent validation

software & systems to be sure that the health of the current state of code is

not compromised, which is useful. It appears that evaluating health every day

rather frequently is a good quality. But is that true? Remember, we are

building products much faster today, which means we are incrementally

adding a lot of code to build new features, modify or enhance existing

features, or fix some issues found by us or customers.

So every time we touch the code to add, modify, or delete something, there is

an innate worry that it could affect the existing code. That the functioning of

the current features may be compromised, and therefore we need to evaluate

whether it is not compromised. As we speed up the development cycles, this

21

do SmartQA. The HyBIST Approach.

becomes frequent, and hence we tend to move towards automated tests so

that we can validate this frequently as and when we build new code and

ensure the health is not compromised.

Remember, it is about the health of the existing code before we did this job, so

it is like taking the same test cases and rerunning them. So humanly

regressing this does not seem very smart, and therefore we should resort to

automation testing, which is perfectly correct. But remember, we are only

talking about regression most of the time. Automation is not limited to

functional regression but also to validating non-functional aspects and many

other tasks like test pipelines, data creation, static analysis, etc.

It is important to note that we are evaluating the current health and the

changes as soon as we deliver a new set of improved setup features in a

product. Unless we have automation along with development, there will

always be a backlog of automated regressions, making it harder to fix. What is

very important to understand in this entire context is not only automation

but also the quality and focus of what is being automated.

1. Are we sure that test cases are adequate, complete, and potent enough to

find issues that matter?

2. Do these validate high-level entities like end-user requirement and

end-to-end flow to give a clearer picture of the impact of change?

22

do SmartQA. The HyBIST Approach.

3. How well implemented it is, is important so that changes do not require

significant changes in the automated script. UI-based automation is more

brittle than non-UI-based automation, i.e., using APIs, and therefore requires

less maintenance effort. Note that these require a system tester to be adept

with programming and tech-savvy.

Do remember that testing is not just about checking past health; it is also

about current health, so there is a need for significant effort in creating newer

scenarios and cases, enhancing the existing ones to be powerful and sharper,

and factoring these into the act of testing in addition to what we do as

automation or automated testing.

In a nutshell, solid tests enable high quality, not the reverse, as it is not the

automated tests that always ensure exceptional quality.

S4-Focus on writing less, to do more

Testers spend considerable time in documenting the test cases based on their

organisational test case template that outlines out how to execute outlining

the detailed steps/procedure. What is wrong with it? It is just that an

unnecessary amount of effort and time is spent doing this mundane

documentation.

23

do SmartQA. The HyBIST Approach.

So when I ask them, why do you do this? The typical answer is. Well, the

company has given us a template and we need to use it because it could be

useful in the future. When a new engineer joins the team this would be a

good starting point. I think it’s important to understand that especially in this

modern world where everything is seemingly Agile, the focus is more on the

act of delivering great outcomes. Therefore the focus as far as a test person is

concerned, should be on thinking, on what the test is, how should it work,

who is going to use it, what could go wrong, what are the various interesting

what-ifs, requiring exploration, digging in, deep diving, walking across the

entire breadth, understanding the context and then designing, to come up

with a first cut of test scenario/cases/data and finally evaluation.

It requires deep intellectual effort in constrained time to think, explore,

question, design, and write as minimally as possible. It is necessary in these

times to move away from thinking of test documentation as a system of

records which may be useful in the future to note-taking to immerse and

sharpen thinking, and use the early test cases arrived at as a first cut to

evaluate and then refine. The practice of laborious documentation using a

document template or as part of a test management tool is arcane.

What is needed is a lot more brevity, a lot more non-textual aspects in terms

of pictures and a non-linear way of writing to stimulate thinking to do better.

24

do SmartQA. The HyBIST Approach.

After all, it is smarter to spend time and effort on doing something that has a

direct bearing on good outcomes. This would give us better time & effort

utilisation and value. The time we gain from not doing detailed

documentation can be put to use fordoing things that are far more valuable

like including smart tooling & automation.

Smart testing is about doing lean documentation, note-taking, staying nimble,

and being effective & efficient.

S5-Focus on test potency, not quantity

As an engineering manager, you’re always keen on understanding or knowing

how good the tests are. Is it sufficient? Is it adequate? Does it have good

coverage? Merely knowing the number of test cases and their traceability

does not add significant value. What is needed is something that gives

confidence in the quality of tests before commencing testing.

Smart test analytics helps in building trust & confidence in the coverage of

tests. What would this entail? It is about knowing if we have covered all

points of view— users & usage, environment, attributes, early-stage entities

to end to end flows, and impact of change.

1. Testing is not about evaluating a product from a technical viewpoint;

it is about evaluating it from the users’ and customers’ business

25

do SmartQA. The HyBIST Approach.

viewpoints to fulfill their needs and expectations. Needs are validated

by functional tests whilst attributes are by specialised tests like

performance, security, migration, compatibility, load and others.

2. Do we have test cases that go beyond finding issues in our code to

those that may surface due to external environments and vagaries in

other systems which we interact with?

3. Looking at the types of issues targeted by our test cases enables us to

sharpen our goal of seeking defects and therefore enhance coverage.

4. Do we have test cases that ensure correctness and also assess

robustness?

5. Do we have test cases that span across different-sized entities like

features to end-to-end flow?

HyBIST (Hypothesis Based Immersive Session Testing) sharpens the focus on

defects to come with first cut of purposeful test cases that are continually

enhanced as test sessions progress while staying vigilant of coverage.

Great coverage implies being adequate, implying lowered defect escapes, lesser

rework, and superior utilisation of capacity to deliver faster. This is what

SmartQA is all about.

26

do SmartQA. The HyBIST Approach.

S6-Focus on quality of issues, not quantity

As engineering managers, we look at defect analytics via charts—defect rates,

defect distribution, and so on. They give us a good bird’s-eye view of bugs

with respect to time, status (i.e., closed or open) and distribution by entities

(features, flows, requirements).

Is that good enough? It is smarter to view types of bugs, not just arrival and

closure rates, in a sense the quality of bugs. I am sure you would agree that

quality of tests/test cases is paramount to quality of product. To look at

“quality of bugs’ is to get a better insight into test quality and therefore

product or application quality. Well this is also a reflection of the quality of

test practice.

How can we view this? What can we look at?

1. Look at issues from newly built entities versus those that are enhanced or

fixed. This helps us understand if we are doing a good job in building or a bad

job in enhancements or fixes.

2. Look at the distribution of issues in normal flows vis-à-vis exceptional

cases, i.e., bugs due to positive test cases vs. negative test cases. This helps us

to understand that if the working system is robust, whether it can withstand

abuse. (Negative is about abuse, while positive is about use.)

3. Look at issues by product attributes, i.e., how many are related to

functional aspects vis-à-vis non-functional aspects, such as usability, security,

27

do SmartQA. The HyBIST Approach.

and so on. This reveals if we are validating end-user expectations and not

functional needs alone.

4. Look at distribution of issues from user’s or persona’s perspective, View

issues as to how may affect end users (persona viewpoint) rather than just

product view point. Note we can also analyse from an ‘environment

viewpoint’ too.

5. Finally, look at issues by entity granularity, i.e., issues at lower or elemental

level, in terms of a feature or component and higher-level issues related to a

business flow or an end user requirement.

Thus, we get a better feel for what kinds of issues have been found.

As for issues not yet found, maybe we won’t find them because the product is

good or because we didn’t look for them, the latter probably more important.

Mere analysis in terms of numbers, distributions, and rates is not sufficient,

delve into quality of bugs via a smarter stratification to enhance effectiveness

& efficiency so we may accomplish more with less.

S7-Focus on the key measure- “Escapes”

Do you focus on escapes? i.e. defects that have escaped testing. They are like a

mirror, they reflect the capability of tests and test teams. Keeping a tab on

defect escapes, both internal and external, helps engineering managers to

understand leakage in process or practice. The simple analogy is to look at

28

do SmartQA. The HyBIST Approach.

testing as multi-stage filtration, defined as quality levels in Hypothesis Based

Immersive Session Testing or HyBIST inspired by fractional distillation. We

apply different filters at different levels to catch different kinds of issues.

However filters are porous for they cannot be without holes; it needs to have

a certain amount of porosity, of varying fineness across levels.

At earlier levels, porosity is about leakage of issues from developers, i.e. dev

test, putting pressure on test folks to uncover them. At the later stage(system

test) porosity implies that defects escape into the field causing customer

dissatisfaction, requires rework and delivered as patches (some urgent) later.

Remember, in addition to the construction phase, the earliest phase of

analysis/requirements, there can also be early-stage requirements in

construction. If these are not “questioned” well, they form holes during

construction as incorrect code/code that should not be there. So these three

categories of leakages would be interesting to know on a periodic basis. I.e.,

requirements to construction, development to test, and test to release.

Escapes are really a mirror, they reflect the test capability, and keeping a tab

on this gives us a better sense of how good our filters are, to enhance

effectiveness, sharpen the way we do things so we do tests speedily, reduce

rework to exploit capacity well. What does this mean? It is about smart defect

typing and associating them into SDLC stages so that we can contain them at

29

do SmartQA. The HyBIST Approach.

the right stage. The key concept of defect types, quality levels and entity

granularity are central to HyBIST to accomplish just this to do SmartQA.

It is about smart containment, enabled by smart escape analysis to change

behaviour from finding to assuring.

S8-Preempt issues, assure not just detect

Sadly, 'testing' as a word is seen as an activity of actual validation, i.e., running

the tests. Step back and ask “Is it just about executing or running?” Not really.

Testing requires a good set of preparatory work before we get into the act of

evaluation, and that demands that the tester get a good, detailed

understanding of what he or she is going to test along with the larger context,

then figure out scenarios to evaluate. Also, during the evaluation, discover

some 'interesting' cases. This is what 'good testing' is all about.'

A lot of meaningful preparatory work is done upfront, and then the

preparatory work outputs are used in execution. Often, we don't give much

importance to the preparation done before execution. This preparation needs

the ability to review a given specification or requirement, to dig in and ask

interesting questions about who, where, what, why, what-if, and so on. In the

process, we might find some holes, need clarifications, discover potential

issues, jot down observations, and come up with suggestions too. We are not

30

do SmartQA. The HyBIST Approach.

just viewing testing as an act of evaluation, but pulling it forward. This

process helps clarify things much better.

It also helps us understand the impact of change. It helps us understand the

impact of the feature addition or modification, explore it in detail, find the

various rabbit holes that a tester can get lost in, and therefore be able to

validate much better. Hence, validation is not just about the act of execution;

it's about the mental aspect rather than physical validation. Physically

validating is about what we do, what we easily understand, and what we

typically automate.

Mental validation is an invisible process that goes on in one's brain to figure

out possibilities and probabilities of what may go wrong, what may happen

that is not yet spec’d out, and come up with interesting questions to answer.

Testing is not to be seen as an act of just executing tests frequently.

Let us use an interesting analogy. We know that for good health, activity or

exercise is good for the body, but we also know rest and sleep are equally

important. It is not just intense activity, i.e., test execution, but quiet thinking,

exploration, and mental activity that are equally important. If the latter is not

good enough, then the former will be less effective and show up much later.

31

do SmartQA. The HyBIST Approach.

S9-Detect early without disrupting rhythm (text TBD)

S10-Characterise defects first, then do RCA

Often we want to analyse issues from the perspective of improvement of how

we can do better. So we analyse defects to identify root causes of what we can

do better. What I have seen in RCA or Root Cause Analysis is an extraordinary

amount of fine-grain detail bordering analysis-paralysis in coming up with

the self-evident root cause(s) i.e. need more time/effort/capability. Well, this

can be discerned without detailed RCA. Isn’t it ?

So when we analyse, it may be smart to look at it from these dimensions:

a. From actions to do than infer reasons

b. From SDLC stages so that we know who needs to act

c. From new implementation or enhancement of where to tighten

A smarter defect analysis would therefore be:

1. Howmany were missed out due to carelessness?

2. Howmany were missed for lack of scenarios/cases?

3. How many were due to non-availability of environment/customer data

sets?

4. How many were due to lack of clarity/ambiguity/misinterpretation of

needs & expectations(requirements)?

32

do SmartQA. The HyBIST Approach.

5. Howmany were due to “well, never thought about this situation”?

6. If it was due to input spec, how can we preempt this?

7. If it was due to poor construction, how can we make it robust?

8. If it was due to poor test quality, how can we strengthen it?

9. Was it due to enhancement or due to new implementation?

10. Was it due to incorrect judgement of correctness?

A smarter analysis would go a long way to get a better insight into the type of

defect and why it may have been missed out, thus enabling us to learn,

improve, and become smarter.

Purposeful defect analysis is like a perfect mirror that enables one to

continually adjust and discover the optimal path, the hallmark of smartness.

S11-Unshackle capacity to handle regression

We want to build rapidly but have a problem with capacity. What can we do?

As we speed up the product development cycle by embracing Agile, it is a

challenge to ensure that the quality of each sprint is not compromised. What

is the challenge? The challenge is to avoid compromising health by frequently

adding, updating, and modifying.

In a sense, we end up doing far too much regression testing. Secondly, as we

speed up, the challenge seems to come from a lack of time due to the time

33

do SmartQA. The HyBIST Approach.

crunch to test. Well, let's dwell on what is being tested. Is it execution?' No,

because it involves understanding what was intended by reading, reviewing,

discussing, exploring, and questioning, and all these take time. Then, come up

with interesting scenarios to evaluate, and then automate as appropriate to

convert them into automated scripts. Then, of course, evaluate using

automated tests using humans, also doing disciplined vs. ad-hoc tests. As

time gets crunched, we seem to be running into a capacity problem, and to

resolve this issue, fix one component regression with automation.

That turns out to be challenging because automation also requires

meaningful effort and further crunching capacity. What do we do? Here is

why I think it's necessary to figure out if it requires evaluation at a later

stage: Could we have done something earlier? Could we have looked at

possibly finding some of these issues earlier, maybe by pre-empting,

interrogating, or reviewing? Let's say the requirements given to us are user

stories, no interrogating stuff to figure out what-if scenarios, or at the

implementation stage by developers for certain kinds of issues.

So we can't just add more capacity to solve this capacity problem because it

requires more money, which is always a scarce commodity. So it is necessary

to get smarter to be able to accomplish this. Smarter means doing less, doing

earlier, exploiting technology, not doing it, preventing it, etc.'

34

do SmartQA. The HyBIST Approach.

Solving the capacity problem is not about adding more. It is about figuring

out (a) how to do less, (b) how to do it earlier, (c) what not to do, (d) what to

do manually, and (e) what can be automated using tools or technology.

Considering these things together and addressing them can help solve the

capacity problem. The capacity issue is a challenge that cannot be

compromised to result in defect escapes.

35

do SmartQA. The HyBIST Approach.

S12 (#5) Exploit intelligence, artificial and human

In today's world, artificial intelligence has usurped human intelligence. Is

there a role for human intelligence in testing? We have dichotomized testing

into manual and automated. Sadly, the word manual is highly incorrect. It

should be human testing, i.e., using human intelligence to test or validate,

while automated testing is about using technology, tools, and machines to

validate software.

Now we have the new cat out of the bag: AI, which has recently made waves

with generative AI. We think that this will replace human tests. So, let's get

back to the subject of what is exploiting intelligence. There are certain things

that a machine (technology) can do very well, and one needs to be smart

enough to exploit them.

If we can do faster using a machine, then do so. If some things can be

observed, perturbed, or exercised by using a tool or technology, then it is

'smart' to exploit it to do so. But understanding, figuring out questions,

connecting various parts to see the big picture and using that to evaluate

requires human intelligence. Today, this can be augmented with AI systems

and software, it is like getting help from an intelligent assistant. But figuring

out the test approach, understanding behaviour and identifying the

conditions, understanding the human psyche, the environment in which they

use it, and the constraints, expectations, and potential mistakes that one

might make are still things that require human intelligence.

36

do SmartQA. The HyBIST Approach.

It is necessary to exploit human intelligence, as testing is not merely a notion

of evaluation at the end. It demands a systems-thinking approach to "look at

individual trees but also understand the larger context of the forest". Human

intelligence plays a definitive role, and today it is aided by the intelligent tools

that are more supplemental than replacement.

Repetition of tests and probing that is hard to be done by a human are those

that demand tools/technology i.e., machine intelligence, that we state as

automated testing. A harmonious mixture of machine intelligence and human

intelligence helps deliver clean code. Testing is not always postcode-based; it

is about doing earlier to detect, prevent, or to enhance clarity.

Testing is more than just determining whether something is correct or

incorrect. It is about walking into the sphere of the unknown, not necessarily

doing what is right or wrong; it is a process of discovery that demands an

intelligent human.

S13 (#11) Expect more out of a professional tester

Do you view testers as one who executes tests and reports issues? Good

managers expect more, impact/risks, suggestions, ideas, interesting

observations frommultiple viewpoints of users, product, environment etc.

When managers expect of them a deep ownership mindset, then they expect

ownership mindset, they may turn out to be merely executors.. If they see

37

do SmartQA. The HyBIST Approach.

themselves as “I am going to buy this product and consume it for my

business,” then the way they look at the product will be quite different, with

an eagle eye for issues that may inhibit work, and ideas/suggestions to

enhance quality of work. The mindset changes, now sharply focused on great

user experience and higher business value.

With an ownership mindset, it is no longer just about executing test cases or

writing test scripts and finding issues. It is a mindset that becomes sharply

critical to identifying aspects that could be done better; suggestive, observing

every minute thing, getting into the skin of end users, and therefore not just

evaluating, validating, or executing.

If an engineering manager expects ownership mindset in them, then testers

will see their job as more challenging and value-adding, moving from

postcode assessment to earlier state critiquing, ideation and suggestion

forcing them to think: “What is the business value that I have added to the

test, to the product, to the customer and their business, and finally to the

company and its business?”

So setting those expectations with the team and viewing them as more than

mere executors enables the team to have a smarter, sharper mindset and

38

do SmartQA. The HyBIST Approach.

certainly much deeper ownership that will transform them into smarter QA

folks.

Expect smarter outcomes from QA in addition to execution and issue rather

than mere evaluation activities. Ensure that the team has a smarter, sharper

mindset and certainly much deeper ownership that will transform them into

smarter QA folks.

Introducing SmartQA

SmartQA is an intellectual practice of going deeper to seek clarity & in the

process uncover, preempt issues rapidly, not limited to mere validation of

code. It is a brilliant combination of checking for expected, exploring the

whole, looking for unexpected, uncovering issues, suggesting needs not yet

thought of, improving what is done, and sensitising to prevent issues.

It is about doing less to accomplish more.

Introducing HyBIST - a method to do SmartQA

HyBIST is an intellectual practice driven by hypothesis based core method to

analyse & design, and do immersively in sessions to test deeply & rapidly.

- Connect HyBIST to Philosophy, Mindset, Methodology, IST as Process

(Highlight that we do not touch org process), Smart Checklists, highlight that

39

do SmartQA. The HyBIST Approach.

HyBIST can make an organisation do SmartQA(enterprise-wide), not just

transform an individual.

The SmartQA Promise

The SmartQA promise to engineering managers are:

- Unshackle capacity to accomplish more with same/less

- Superior test coverage to enhance test effectiveness, lower rework

- Objective health assessment to aid better decision making

- Provide rich insights to foster practice improvement

40

do SmartQA. The HyBIST Approach.

SmartQA Outcomes

Left shifting : Improve DevTest

Reduce defect escapes from Dev to QA by 60% & 25% in two software

product companies.

Enhance quality of user stories

Sensitising & preventing issues on user stories i.e. testing requirements in a

German product engineering major. Sharpen sensitivity to issues in Agile

sprints.

QA Practice Improvement

- Enabled a Chipcard major to find dormant issues that would have

derailed certification & improved coverage by 10+% on their already

well tested code.

41

do SmartQA. The HyBIST Approach.

- Enabled large Japanese SI to rollout large applications (instant

cutover) with no hitch.

- Vastly improved test assets and practice of QA to instil high

confidence in senior management of a complex product

- Significantly enhanced test practice in a large product major (300

people world wide engg team) making their Agile journey sharpen

their focus on tech debt. Changed mindsets, re-jigged practice, helped

in automation strategy and sharpened focus on measurement and

actions.

Embracing SmartQA

42

do SmartQA. The HyBIST Approach.

First “do WELL” - cover more, enhance coverage, sharpen dev/qa focus, use

internal defect escapes as mirror.

Secondly “do QUICKLY” via smart in-sprint automation, rapid session testing

enabled by ‘write less, do more’

Thirdly “do EARLY” - adopt smart checklists to review/question early stage

artefacts to find potential issues/holes early to shift left smartly

Lastly “do LESS” - leverage test assets (strategy, scenarios, issues)

STAG Software focuses on enabling organisations to embrace SmartQA via:

1. HyBIST Courses for Product owner/Mgr, Dev & QA to transform

mindsets

2. SmartQA Consulting & Advisory to assist in practice implementation

3. doSmartQA - HyBIST test analysis & design tool

43

