

”Communicate Clearly: Language Aspects for Effective Testing”

Master the art of precise communication in software testing with this
comprehensive guide. This book offers a structured approach to demystify
testing jargon and enhance clarity in communication. By categorising over
FIFTY key testing terms into THIRTEEN cohesive groups, it provides clear
definitions and a systematic framework to improve understanding and
usage. Whether you're a developer, tester, or QA professional, this guide
helps to:
• Clarify and standardise software testing terminologies.
• Organise terms into logical categories for improved comprehension.
• Promote effective communication within testing teams and

stakeholders.

Elevate your testing practice and foster seamless collaboration within
teams. "Communicate Clearly” is your go-to guide for effective
communication in the world of software testing.

About the author
Thiruvengadam Ashok is the CEO of STAG Software Private Limited & Co-Founder of
Pivotrics, based in Bengaluru, India. Ashok has dedicated his career to the pursuit of
quality assurance in software, continuously evolving his approaches to match the needs
of modern systems. He is the creator of HyBIST, an innovative approach to SmartQA that
has revolutionised how teams approach hypothesis-driven testing.

Ashok’s professional life is deeply intertwined with his personal philosophy. A
passionate ultra-distance runner and long-distance cyclist, he applies the principles of
endurance and exploration to his work, constantly seeking out new ways to improve
software quality. He is also an avid wordsmith, using his love of language to weave both
poetry and technical innovation into his life’s work.

He holds an M.S. in Computer Science from the Illinois Institute of Technology, a
Bachelor's degree in Electronics and Communication Engineering from the College of
Engineering, Guindy, and a Postgraduate Diploma in Environmental Law from the
National Law School of India University, Bangalore. His life maxim—"Love what you do &
Do only what you love"—is reflected in everything he undertakes, from professional
projects to personal passions.

Copyright © 2025, Thiruvengadam Ashok
All rights reserved.
No part of this publication may be reproduced, distributed, or transmitted in any form or
by any means, including photocopying, recording, or other electronic or mechanical
methods, without the prior written permission of the publisher, except in the case of
brief quotations used in reviews and certain other noncommercial uses permitted by
copyright law.

Disclaimer:
The information contained in this book is for educational and informational purposes
only. While every effort has been made to ensure the accuracy of the content, the author
and publisher make no representations or warranties regarding the completeness,
accuracy, or applicability of the information provided. The strategies and methodologies
described are for informational purposes and should be adapted to individual
circumstances as necessary.

Trademarks:
All product names, logos, and brands mentioned in this book are the property of their
respective owners. Use of these names, logos, and brands does not imply endorsement.
HyBIST is the intellectual property of STAG Software Private Limited.

Edition: First edition, 2025.

TABLE OF CONTENTS

LANGUAGE ASPECTS FOR EFFECTIVE TESTING 6
Clarity of thought 6

Abuse via jargons 6

Categorisation of terms 7

Category-1: Based on Test Levels 8

Category-2: Based on Test Types 9

Category-3: Based on Test Techniques 10

Category-4: Based on Evaluation Approach 12

Category-5: Based on Evaluation Method 13

Category-6: Based on Execution Approach 14

Category-7: Based on Principle 15

Category-8: Based on SDLC Models 16

Category-9: Based on Practices 17

Category-10: Based on Entities 19

Category-11: Based on Domain 20

Category-12: Based on Technology 21

Category-13: Based on Checks 22

CATEGORISATION OF TERMS - THE FULL PICTURE 23

COMMUNICATE CLEARLY

LANGUAGE ASPECTS FOR EFFECTIVE TESTING
Clarity of thought
It takes clarity in thinking and clear communication to assure smartly. The language and
therefore terms/phrases used have a significant play in this. Given that a lot of terms in
software engineering and in particular software testing are takeoffs of typical English
terms, they tend to lose its sharpness of intent and most often gets in a general wide
sense, in effect abusing the term and therefore resulting in poor thinking and
communication.

Abuse via jargons
Jargons abound in software, only to be misused most often! And I think in our discipline
of testing, they are abused even more! Most of the terms seem to have an appendage
of ‘testing’ making it far more confusing. Some terms are test types while some are
approaches, and some practices and so on. Here I partition 50+ software testing terms
into THIRTEEN cohesive groups to sharpen the clarity depicting it as simple mind map
and then giving a clear definition to each one.

6

COMMUNICATE CLEARLY

Categorisation of terms
 Here is a mind map that groups the terms based on a phrase to minimise confusion and
sharpen clarity.

The mind map above categorises FIFTY common test terms that are typically abused
into THIRTEEN categories so that we may communicate clearly. Each category is
detailed in the next thirteen sections.

7

COMMUNICATE CLEARLY

CATEGORY-1: BASED ON TEST LEVELS
The terms Unit, Integration, System, Acceptance testing refer to levels of testing,
implying as to what phase of SDLC it is done, the earliest being Unit testing.

Levels communicate :
(1) when is it done - early (construction), middle (integration) & late (pre-deployment).
(2) what kind of entity is being validated - a small building block (i.e. Unit) , composition

of a few units (i.e. Integration), the whole (System).

Note each level is focused on uncovering different types of issues:

Test LEVEL ENTITY validated Focus on what ISSUE From POV

Unit Building block
Basic data validation issues,
data interface issues, structural
issues & basic functional issues.

Technical/Engineer

Integration Technical feature
Interface issues & functional
issues

Technical/Engineer

System
User
Requirement,
E2E flow

E2E functional & non-functional
issues

End user, Business

8

COMMUNICATE CLEARLY

CATEGORY-2: BASED ON TEST TYPES
Functional, Performance, Load, Security, Reliability, Stress, Volume and others are really
specific types of tests designed to uncover specific types of issues, the functional being
the behaviour while the others are about the various attributes related to the behaviour.

A mixture of ISSUES to be uncovered
 represented as !@#$%^&

! @ # $ % ^ & …

Functionality Usability Performance Load Security Reliability Compatibility …

each TEST TYPE focusses on a specific issue

9

COMMUNICATE CLEARLY

CATEGORY-3: BASED ON TEST TECHNIQUES
Black box, White box are really test techniques. Black box techniques use external
behavioural information to design test cases whilst white box uses internal structural
information to design test cases. Pair-wise (All-pairs), Orthogonal array is a specific
technique to combine test inputs to generate optimal number of test cases.

All pairs testing is a combinatorial method of software testing that, for each pair of input
parameters to a system (typically, a software algorithm), tests all possible discrete
combinations of those parameters. Using carefully chosen test vectors, this can be done
much faster than an exhaustive search of all combinations of all parameters, by
‘parallelising’ the tests of parameter pairs.
(From Wikipedia) . Click here for more from Wikipedia.

“Orthogonal array testing is a black box testing technique that is a systematic, statistical
way of software testing. It is used when the number of inputs to the system is relatively
small, but too large to allow for exhaustive testing of every possible input to the systems.
It is particularly effective in finding errors associated with faulty logic within computer
software systems. Orthogonal arrays can be applied in user interface testing, system
testing, regression testing, configuration testing and performance testing. The
permutations of factor levels comprising a single treatment are so chosen that their
responses are uncorrelated and therefore each treatment gives a unique piece of
information. The net effects of organising the experiment in such treatments is that the
same piece of information is gathered in the minimum number of experiments.”
(From Wikipedia). Click here for more from Wikipedia.

10

https://en.wikipedia.org/wiki/All-pairs_testing
https://en.wikipedia.org/wiki/Orthogonal_array_testing

COMMUNICATE CLEARLY

Test LEVELS, TYPES & TECHNIQUES are orthogonal i.e technique(s) is/are used to
design test scenarios/cases for a type of test that is performed as part of a test level.

11

COMMUNICATE CLEARLY

CATEGORY-4: BASED ON EVALUATION APPROACH
Is the approach to validation structured, ad hoc, exploratory, risk-based? This
categorisation indicates how what governs the high level view to validation.

Ad-hoc testing an approach to testing a software in an unstructured manner with
consciously applying any techniques to design test cases, to break the system using
unconventional ways.
- Testbytes.

Exploratory testing is an approach to software testing that is concisely described as
simultaneous learning, test design and test execution. It is defined as”a style of software
testing that emphasises the personal freedom and responsibility of the individual tester
to continually optimise the quality of his/her work by treating test-related learning, test
design, test execution, and test result interpretation as mutually supportive activities that
run in parallel throughout the project.”
- Wikipedia.

Risk-based testing (RBT) is a testing approach which considers risks of the software
product as the guiding factor to support decisions in all phases of the test process.

12

https://www.testbytes.net/blog/adhoc-testing/
https://en.wikipedia.org/wiki/Exploratory_testing

COMMUNICATE CLEARLY

CATEGORY-5: BASED ON EVALUATION METHOD
What are we examining to validate? What information will be used to figure out the
strategy and then to design? This category classifies term based on the method of
evaluation.

Black-box testing is a method of software testing that examines the functionality of an
application without peering into its internal structures or workings. This method of test
can be applied virtually to every level of software testing: unit, integration, system and
acceptance. It is sometimes referred to as specification-based testing.
- Wikipedia

White-box testing is a method of testing software that tests internal structures or
workings of an application, as opposed to its functionality. White-box testing can be
applied at the unit, integration and system levels of the software testing process.
Although traditional testers tended to think of white-box testing as being done at the unit
level, it is used for integration and system testing more frequently today. It can test paths
within a unit, paths between units during integration, and between subsystems during a
system–level test. Though this method of test design can uncover many errors or
problems, it has the potential to miss unimplemented parts of the specification or
missing requirements.
- Wikipedia

Model-based testing is an application of model-based design for designing and
optionally also executing artefacts to perform software testing or system testing. Models
can be used to represent the desired behavior of a system under test (SUT), or to
represent testing strategies and a test environment.
- Wikipedia.

13

https://en.wikipedia.org/wiki/Black-box_testing
https://en.wikipedia.org/wiki/White-box_testing
https://en.wikipedia.org/wiki/Model-based_testing

COMMUNICATE CLEARLY

CATEGORY-6: BASED ON EXECUTION APPROACH
The terms “Manual testing” (Human testing really) and “Automated testing” indicate the
method of execution of test cases, the former implying human being is executing the
test(s) whereas in the latter it is machine that is executing the test cases.

Manual testing seems to connote the physical act of executing tests, observing results
and judging correctness, in reality it should be termed Human testing that views the
larger act of validating a system that uses intellectual capabilities to analyse, design and
then execute physically , learn from context and improvise.

14

COMMUNICATE CLEARLY

CATEGORY-7: BASED ON PRINCIPLE
Terms like Shift-left testing, scripted/unscripted testing and risk-driven testing indicate
principles that govern validation. Some of the principles are:
- Pull forward activities early in the lifecycle to detect issues early, prevent at best
- Perform validation after thinking deeply and coming up with good scenarios/cases
- Exploit content and creativity to uncover new issues while testing
- Given that one can never prove the absence of issues, focus on business risk to focus

on key areas/issues and not overdo too.

Shift left testing - While early testing has been highly recommended by software testing
and QA experts, there has been a special emphasis on this agile approach of Shift Left
testing that recommends reversing the testing approach and involving system/software
testing earlier in the lifecycle. Practically, move the testing approach to the left end on the
project timeline.
- Cigniti blog

15

https://www.cigniti.com/blog/shift-left-approach-need-perform-early-software-testing/

COMMUNICATE CLEARLY

CATEGORY-8: BASED ON SDLC MODELS
Given various SDLC models in vogue, terms like Agile testing, Devops testing etc.,
indicate when & what test activities are expected in the lifecycle and by whom. After all,
different development lifecycle models demand different points of intervention,
frequency and roles of validation.

Agile testing is a software testing practice that follows the principles of agile software
development. Agile development recognises that testing is not a separate phase, but an
integral part of software development, along with coding. Agile teams use a "whole-
team" approach to "baking quality in" to the software product.
- Wikipedia

16

https://en.wikipedia.org/wiki/Agile_testing

COMMUNICATE CLEARLY

CATEGORY-9: BASED ON PRACTICES
What do CI/CD, TDD, BDD, ATDD etc. indicate? They signify wholesome practices to
deliver great working code via sharp focus to finding issue early or preventing as in TDD
at early dev stage and BDD, ATDD for complete system with CI/CD focussed on the
practice of construction and deployment.

Continuous integration (CI) is the practice of merging all developer working copies to a
shared mainline several times a day. Extreme programming (XP) adopted the concept of
CI and did advocate integrating more than once per day.
- Wikipedia.

Continuous delivery (CD) is a software engineering approach in which teams produce
software in short cycles, ensuring that the software can be reliably released at any time
and, when releasing the software, doing so manually. It aims at building, testing, and
releasing software with greater speed and frequency. The approach helps reduce the
cost, time, and risk of delivering changes by allowing for more incremental updates to
applications in production. A straightforward and repeatable deployment process is
important for continuous delivery. CD contrasts with continuous deployment, a similar
approach in which software is also produced in short cycles but through automated
deployments rather than manual ones.
- Wikipedia

Test-driven development (TDD) is a software development process that relies on the
repetition of a very short development cycle: requirements are turned into very specific
test cases, then the software is improved to pass the new tests, only. This is opposed to
software development that allows software to be added that is not proven to meet
requirements.
- Wikipedia

Acceptance test–driven development (ATDD) is a development methodology based on
communication between the business customers, the developers, and the testers. ATDD
encompasses many of the same practices as specification by example (SBE), behavior-
driven development (BDD),example-driven development (EDD), and support-driven
development also called story test–driven development (SDD). All these processes aid
developers and testers in understanding the customer’s needs prior to implementation
and allow customers to be able to converse in their own domain language.

ATDD is closely related to test-driven development (TDD). It differs by the emphasis on
developer-tester-business customer collaboration. ATDD encompasses acceptance
testing, but highlights writing acceptance tests before developers begin coding.

17

https://en.wikipedia.org/wiki/Continuous_integration
https://en.wikipedia.org/wiki/Continuous_delivery
https://en.wikipedia.org/wiki/Test-driven_development#TDD_and_ATDD

COMMUNICATE CLEARLY

 - Wikipedia

Behavior-driven development (BDD) - This is software development process that
emerged from test-driven development (TDD). Behavior-driven development combines
general techniques and principles of TDD with ideas from domain-driven design and
object-oriented analysis and design to provide software development and management
teams with shared tools and a shared process to collaborate on software development..
- Wikipedia.

18

https://en.wikipedia.org/wiki/Acceptance_test%E2%80%93driven_development
https://en.wikipedia.org/wiki/Behavior-driven_development

COMMUNICATE CLEARLY

CATEGORY-10: BASED ON ENTITIES
Given that the objective of testing is to uncover key issues in a system, it is important to
know where to look for these i.e. in what entities :
1. In the building blocks of a system i.e screens(GUI), API, libraries, components
2. In basic technical features i.e. the behaviour when building blocks are integrated
3. In end user requirements i.e. combination of features in a certain sequence
4. In end to end business flows that may involve different end users

So when we say GUI/API/E2E testing it really means ‘what-to-test’ i.e. entities.

Note:The key concept “Entity Granularity in HyBIST(Hypothesis Based Immersive Session
Testing) highlights this aspect to optimally partition what type of issues to look in
different entities when (early/late) and by whom (Dev/QA).

19

COMMUNICATE CLEARLY

CATEGORY-11: BASED ON DOMAIN
What do terms like eCommerce testing, Supply chain testing etc. mean? Well they
signify a business domain context that highlights specific end to end flows end users’
expectations to focus on issues unique to that business. Note some domains maybe
regulated and may require conformance to specific compliance standards.

20

COMMUNICATE CLEARLY

CATEGORY-12: BASED ON TECHNOLOGY
When terms like "Database testing" or "Cloud testing" are used, they imply a focus on
identifying specific issues unique to that technology. Unlike testing types, levels,
techniques, or other categories, these terms highlight the intent to uncover unique
issues arising directly from the technology's use.

21

COMMUNICATE CLEARLY

CATEGORY-13: BASED ON CHECKS
The final categorisation is based on checks for conformance i.e. not looking for new
issues but ascertaining if existing system is not compromised and is fit.

Sanity testing is primarily a basic evaluation of system to ascertain if it basically good
enough to go ahead so that we may proceed to do thorough testing.

Regression testing on the other hand is about checking if prior health of a system has
not been compromised due to changes done. It simply means what was available &
working earlier continues to do so.

22

COMMUNICATE CLEARLY

CATEGORISATION OF TERMS - THE FULL PICTURE

Summarising,
Testing is looking for specific issues using specialised techniques &
practices at different levels of various sized entities employing specific
evaluation method, approach that may be built following various SDLC for
specific business domains and technology executed in a human/automated
manner while ensuring conformance all through.

23

COMMUNICATE CLEARLY

The Symphony of Testing

At varied levels, tests take their place,
Each uncovering a unique trace.

Through types defined and techniques refined,
A path to quality is aligned.

With an evaluation approach, we steer,
And a trusted method keeps tasks clear.
Execution approaches tailored and wise,
Bring hidden truths to sharpened eyes.

Guided by principle, rooted and strong,
Across SDLC models, we journey along.

Through practiced hands and diligent care,
Entities thrive under watchful glare.

For every domain and technology’s might,
Testing ensures the systems are right.

With checks in place, no flaw too small,
Testing secures the heart of it all.

- ChatGPT on ‘Communicate Clearly’

24

“We are SmartQA evangelists. For over two decades we have
transformed how individuals, teams and organisations have
practised testing. We espouse methodology to test intelligently.
Our mission - Elevate to high performance via SmartQA.”

www.stagsoftware.com

The HyBIST Approach to SmartQA - MASTERCLASS
Testing is deep probing to seek clarity and in the process
uncover, preempt issues rapidly. The HyBIST approach enables
designing smart probes and probing the system smartly.
https://smartqa.academy/courses/smartqa-using-hybist

doSmartQA - AI based Smart Probing Assistant to interrogate,
hypothesise issues, design & evaluate user story or a set of
stories in a sprint rapidly. An assistant for smart session-based
testing based on HyBIST.
Download personal edition from here

SmartQA Musings - A gentle flurry of interesting thoughts on
smart assurance as a weekly webcast. A refreshing view of
assurance to broaden & deepen thoughts/actions.
www.stagsoftware.com/subscribe

SmartQA Biweekly - Ignite your curiosity with fresh insights,
thought-provoking ideas, and inspiring content delivered
straight to your inbox every fortnight.
www.stagsoftware.com/subscribe

25

http://www.stagsoftware.com
https://smartqa.academy/courses/smartqa-using-hybist
https://chromewebstore.google.com/detail/dosmartqa-personal-editio/npeempjncmpfiiknagfafkbklomdenjk
http://www.stagsoftware.com/subscribe
http://www.stagsoftware.com/subscribe

A rich collection of original content on smart assurance

SmartQA eBooks - for Sr Engg/QA managers, Sr Test Practitioner
& Young Test Practitioners too.

HyBIST at a glance
do SmartQA -The HyBIST Approach
High Performance QA
50 Tips for SmartQA

Download from www.stagsoftware.com/smartqa-ebooks

SmartQA Wisdom - Profound nuggets of wisdom to think deeply,
do rapidly & smartly for Test Practitioners.

on Smart Assurance
on Personal Growth
on Test Design
on Smart Understanding
on Mindset & Habits
on Problem Solving

Download from www.stagsoftware.com/smartqa-wisdom

26

http://www.stagsoftware.com/smartqa-wisdom
http://www.stagsoftware.com/smartqa-ebooks

	LANGUAGE ASPECTS FOR EFFECTIVE TESTING
	Category-1: Based on Test Levels
	Category-2: Based on Test Types
	Category-3: Based on Test Techniques
	Category-4: Based on Evaluation Approach
	Category-5: Based on Evaluation Method
	Category-6: Based on Execution Approach
	Category-7: Based on Principle
	Category-8: Based on SDLC Models
	Category-9: Based on Practices
	Category-10: Based on Entities
	Category-11: Based on Domain
	Category-12: Based on Technology
	Category-13: Based on Checks
	CATEGORISATION OF TERMS - THE FULL PICTURE

