


PREFACE

This crisp book takes a hard look at challenges and problems senior

engineering managers face in QA/testing and presents refreshing,

sometimes contrarian solutions. It examines practice, mindset &

techniques followed and presents interesting ideas based on

problem-solving, culture & mindset, philosophy & thinking styles, in

addition to a scientific approach to test engineering.

The ideas outlined here are the outcome of my two decades plus

research and application of scientific approaches to bug finding

focussed on developing a personal methodology to making software

testing effective and efficient.



TABLE OF CONTENTS

Chapter #1: The backdrop “State of affairs” 5

The current context 5

State of testing practice 6

Chapter #2: Industry Challenges in QA 7

Challenge #1-Grappling with too much testing? 7

Challenge #2-Choked by bugs? 8

Challenge #3-Challenged by test adequacy? 10

Challenge #4-Troubled by development test? 11

Challenge #5-Weighed down by automation? 12

Challenge #6-Are your quality metrics insightful? 13

Chapter #3: Introduction to SmartQA & HyBIST 15

What is SmartQA? 15

HyBIST - An approach to SmartQA 16

Chapter #4: SmartQA Suggestions 17

Suggestion #1 Focus on direction first, then on speed 17

Suggestion #2 Focus on practice & process, then tools 18

Suggestion #3 Focus on scenarios, then automated scripts 20

Suggestion #4 Focus on writing less, to do more 21

Suggestion #5 Focus on test potency, not quantity 22

Suggestion #6 Focus on quality of issues, not number 23

Suggestion #7 Focus on the key measure- “Escapes” 25

Suggestion #8 Preempt issues, assure not just detect 26

Suggestion #9 Characterise defects first, then do RCA 27

Suggestion #10 Unshackle capacity to handle regression 28

Suggestion #11 Exploit intelligence, artificial and human 30



Suggestion #12 Expect more out of a professional tester 32

Suggestion #13 Detect early without disrupting dev rhythm 33

Chapter #5: do SmartQA. The way forward. 35

The SmartQA Promise 35

SmartQA Outcomes 36

Embracing SmartQA 37



do SmartQA. The HyBIST Approach.

Chapter #1: The backdrop “State of affairs”

The current context

In these times where systems are complex and machines intelligent,

businesses impatient and timelines shortened, customers demanding

and work unending, technology expansive and engineering capacity

limited, it is only prudent to be smarter to do less and accomplish

more.

Software development has significantly evolved and matured, but the

QA practice seems archaic, relying solely on automated testing without

embracing a comprehensive approach.

The modern development approach is rapid leveraging code via

frameworks, components whereas testing seems to be stuck in

applying basic principles or relying heavily on experience. The focus is

skewed towards validation via automated tests, focussed less on

intellectual practice to digging in and questioning, to preempt or

detect early, to go beyond bug finding towards suggesting, ideating and

delivering higher value.

5



do SmartQA. The HyBIST Approach.

State of testing practice

Quality seems to be caught up between do-more/test-continuously on

one side and finding issues earlier/assure on the other side, without a

clue on how to marry them in simple terms. There seems to be

extreme reliance on rote continuous testing via automation rather than

smart assurance exploiting human intelligence.

Some common observations that stunt the practice are:

- rely on experience for effective testing

- most often the approach is black box

- more of check not as much test (compliance vs bug-seeking)

- unclear partitioning/objectives of dev & QA(system) test

- emphasis on scripted test cases

- template-driven test case design limiting effectiveness

- focus on code validation, not much as questioning/exploring

- effectiveness(speed) usurps effectiveness(test quality)

6



do SmartQA. The HyBIST Approach.

Chapter #2: Industry Challenges in QA
Here I outline some of the key challenges observed in my numerous

interactions with engineering/QA leadership spanning across

organisations in different domains, technologies, maturity levels and

sizes.

The six challenges outlined here are:

1. Grappling too much testing?

2. Choked by bugs?

3. Challenged by test adequacy?

4. Troubled by development test?

5. Weighed down by automation?

6. Are your quality metrics insightful?

Challenge #1 Grappling with too much testing?

“We are doing a lot of testing, consuming significant effort/time. Yet, we

have customer issues that weigh us down. In today’s rapid dev model,

automation seems to be in catch up mode, another backlog to handle

now” a Senior Engineering Director of a global product company said.

How can we do better? Is automation the only way forward? What can

we do to test smarter?

QA doing work that Dev Test should have covered, writing

unnecessary detailed test documentation, relying solely on scripted

7



do SmartQA. The HyBIST Approach.

tests, doing too much regression, creating a large automation backlog

due to poor test organisation are some key reasons I have noticed that

saps capacity and effectiveness of QA.

Test automation is certainly a way forward, but after enhancing

effectiveness via SmartQA. Sharpen QA focus, strengthen scenarios,

don’t do others work, and then automate is what SmartQA is.

Challenge #2 Choked by bugs?

“Despite all the testing we do, field issues do not seem to abate.

Sometimes it is a few serious issues that cause us to react intensely,

sometimes it is a bunch of simple issues that make us consume

bandwidth. Clearly the backlog is building up, with debts to be serviced,

straining capacity to deliver new ideas.”

8



do SmartQA. The HyBIST Approach.

This is what I hear from senior engineering managers of product

companies. How do you go about fixing this? Well, I have seen a flurry

of activity to identify root cause(s) and address them. They help to set

focus, but fizzle out.

Analysing 'quality of issues’ to understand types of issues that leak

enables practical actions, rather than jumping into the ‘reason of why’

(root cause). Smart QA it is, to do failure analytics differently, to

‘tighten the purse’.

Bugs are indeed a serious drain on engineering capacity, forcing one to

fix issues at the expense of building revenue yielding new features.

Smart failure analytics visualises problems well, enabling clear actions

to strengthen practice and reduce debt significantly.

9



do SmartQA. The HyBIST Approach.

Challenge #3 Challenged by test adequacy?

“Our product is complex and used in myriad interesting ways in different

environments. We seem to be discovering a variety of issues continually

on the field. Wonder if our tests and test cases are adequate? We do have

a lot of test cases, but are we effective?” asked an Engineering Director

of a global product company. How can I tighten the noose? How can I

enhance the filter?

Most often I have seen as practice, that test scenarios/cases are

designed solely based on one’s experience. This, though valuable,

poses a challenge - “How do I logically conclude that it is sufficient,

adequate?”

Well, one cannot surmise that all scenarios can indeed be thought of

a-priori; as during the act of execution, we do discover potentially

interesting failure cases. The intent to question completeness is very

useful, it allows one to question deeply, which is what brilliant testing

is all about.

A behaviour driven approach to test design enables a mindset to

extract conditions from requirements, understand perturbations from

other parts of the system leading to ‘robust test design’. After all, a

good filter tightens the noose!

10



do SmartQA. The HyBIST Approach.

Challenge #4 Troubled by development test?

“Yes, we know that doing early dev test is superior. Despite requisite

focus, we don’t seem to be effective. QA finds issues that can be found

earlier, wasting bandwidth, missing out issues in real life user flows.”

Early stage code quality is strengthened if specific types of issues are

targeted, these could be detected via DevTest, code review or smart

checklists.

A typical problem that I have seen is the lack of clear partitioning of

what issues to focus on in DevTest and SystemTest. The result - a

porous gate between early and late stage testing, resulting in high

internal defect leakage, strangling effectiveness of QA. Automation of

DevTest is powerful, potent if DevTest cases are sharp and focussed.

It is paramount to ensure that the approach does not create more work

for developers or upset the development rhythm. Smart Checklist is a

11



do SmartQA. The HyBIST Approach.

brilliant tool for this. (The book “The Checklist Manifesto “by Atul

Gawande is an illuminating read).

We have seen remarkable improvement in overall quality via

“left-shifting”, reducing internal leakage by well over 50%. In today’s

age of rapid development and frequent releases, strengthening early

DevTest has a multi-fold effect on product QA.

Challenge #5Weighed down by automation?

“As we embrace faster release cycles, testing has become a bottleneck.

Yes, we have embraced automation as the way forward. We have a huge

regression suite and therefore a big backlog for automation, a tough

balance to speed up and yet maintain the fast paced release rhythm.

What can I do?”

Automated tests are great to monitor the system health especially if

the regression tests key flows rather than features or requirements.

I have seen automation embraced as the solution to speed up testing.

The challenge is however keeping the correct it is, the problem is -

what makes it worth the while to automate? Automated tests have to

be in sync with the product and are therefore not a one time effort.

12



do SmartQA. The HyBIST Approach.

Choosing the right ones implies, it needs to be at the level of user flow,

and be a clear indicator of health. Unless test scenarios are well

structured and organised, choosing the right ones will turn out to be

difficult, and ultimately weigh you down. It then becomes a pursuit of

catching up with automation rather than making it work for you.

The goal is not 100% automation, it really is no leakage of defects.

Automated tests are really ‘checks’ that assess key paths for good

health (correctness) while intelligent human tests focus on finding

issues(robustness). A harmonious balance between these two enables

clean code to be delivered without being weighed down by

automation.

Challenge #6 Are your quality metrics insightful?

“We track a lot of metrics related to progress of development and quality

every sprint, like backlogs, technical debt, velocity, task status etc. What

is not very evident is the ‘quality of movement’ i.e. how well done, so that

we create less debt as we move.” How can I get a better insight of quality

of tests done and a more objective measure of product quality?

Extrinsic metrics are easier to measure and give visibility of direction,

progress, speed and external feel of product quality. Intrinsic metrics

are deeper, harder to measure but can give greater insight into the

quality of work. Measuring this requires a good structure and

13



do SmartQA. The HyBIST Approach.

organisation of test artefacts. The benefit is a greater insight into

effectiveness of outcome and therefore lower technical debt & greater

acceleration, don’t you think?

Metrics can be classified as measuring work progress, work quality,

product quality and practice quality. Except for the first one on work

progress where we have a lot of measures facilitated by project and

test management tools, the others depend on test organisation and

clarity of types of issues to uncover. ‘Quality Levels’ based on HyBIST

(Hypothesis Based Immersive Session Testing) provides a strong

foundation for these, enabling one to assess potential test

effectiveness, judge product quality objectively and fine tune practice

quality .

14



do SmartQA. The HyBIST Approach.

Chapter #3: Introduction to SmartQA & HyBIST

What is SmartQA?

Testing is not about merely checking for compliance, nor is it just

about finding issues with delivered code; it is being curious about what

may be intended by producer, what may be expected by consumers,

the correctness and incorrectness of what is present, identification of

what is probably needed but missing, and the plain inquisitiveness

resulting in interesting questions that enable deepening the

understanding, ultimately delivering value in a larger business context

by this act. It is no longer just a physical act of validation of code but an

intellectual practice to preempt issues in early-stage spec, design, and

code.

SmartQA is an intellectual practice of going deeper to seek clarity & in

the process uncover, preempt issues rapidly, not limited to mere

validation of code. It is a brilliant combination of checking for

expected, exploring the whole, looking for unexpected, uncovering

issues, suggesting needs not yet thought of, improving what is done,

and sensitising to prevent issues all done in a super efficient and

immersive fashion.

It is about doing less to accomplish more.

15



do SmartQA. The HyBIST Approach.

HyBIST - An approach to SmartQA

HyBIST(Hypothesis Based Immersive Session Testing) is an

intellectual practice driven by a hypothesis based core method to

analyse & design, and then done immersively in sessions to test deeply

& rapidly.

Brilliant testing happens when there is an overarching philosophy that

shapes an individual mindset becoming an organisation culture as a

collective that results in good practice assisted by a process & tools to

take that forward. HyBIST is precisely this, a personal practice guided

by the philosophy of clarity & understanding as central to quality

resulting in a curious questioning mindset that is logical yet creative.

Smart Checklist is one such tool to enable this practice.

16



do SmartQA. The HyBIST Approach.

Chapter #4: SmartQA Suggestions
SmartQA is about doing less to accomplish more and here are

THIRTEEN suggestions based on “Do less, Do better, Do faster & Don't

do”.

1. Focus on direction first, then speed

2. Focus on practice & process, then tools

3. Focus on scenarios, then automated scripts

4. Focus on writing less, to do more

5. Focus on test potency, not quantity

6. Focus on quality of issues, not number

7. Focus on the key measure- “Escapes”

8. Preempt issues, assure not just detect

9. Characterise defects first, then do RCA

10. Unshackle capacity to handle regression

11. Exploit intelligence, artificial and human

12. Expect more out of a professional tester

13. Detect early without disrupting dev rhythm

Suggestion #1 Focus on direction first, then on speed

Given that testing is done frequently in every sprint, there is a definite

need for speed and therefore automation of testing. But before you get

on to the fast moving lane of validation, pause and be sure that the

direction you are headed is right.

17



do SmartQA. The HyBIST Approach.

What does this mean? It is about starting off with a clear purpose of

what, what-for, where and how of test/retest, taking into consideration

the various points of view: entities, end users, environments, structure

and interactions. It is about clarifying the purpose, setting up direction

and then constantly adjusting/refining it during the act of validation.

In HyBIST the purpose is expressed as a Cartesian product:

What-to-test/check X What-to-test/check-for X Where-to-test/check X

How-to-test/check i.e. {entities X potential issues X environment X

how}. Check implies compliance to stated (regress for existing) while

test implies looking for issues,the unexpected. Note that

How–to-test/check may be also done with Smart Checklists to not only

detect but preempt common issues.

Viewing SmartQA as an intellectual practice makes the act purposeful,

setting up a clear direction, and then speeding up the validation

activities to deliver great outcomes.

It is not speed that matters, it is velocity velocity. Be clear of the specific

purpose i.e. direction, before you go full on.

Suggestion #2 Focus on practice & process, then tools

Continuous development, frequent build & validation, the relentless

regression to ensure existing(prior) code is not compromised are

18



do SmartQA. The HyBIST Approach.

certainly interesting demands in today’s development regime.

How does one stay on top of this? By automating all tests? Is it about

being able to do more by leveraging tools? SmartQA is about doing less

to accomplish more, and is not merely about doing more in less time.

Let us look at the solution from the aspects of being effective,

consistent and efficient.

Firstly sharpen the individual practice via being purposeful, enabling

clarity to be effective, and being nimble in the doing. Enhancing

individual effectiveness implies less re-work in future and better

capacity utilisation.

Secondly tighten and lighten the organisational practice to be

meaningful and very consistent. Ensuring consistency implies

enhanced bandwidth for doing interesting things.

Finally leverage tools to speed up and lift up mode to be superior and

be efficient.

When effectiveness, efficiency and consistency are in harmony, it is a

brilliant balance, SmartQA.

19



do SmartQA. The HyBIST Approach.

Suggestion #3 Focus on scenarios, then automated scripts

The dichotomy of testing into manual and automated should really be

intellectual and mechanical of exploiting human smartness and

leveraging tools. Is automation key to delivering high quality software?

The need for frequent & continuous validation demands automating

the standard health checks to be sure that additions and modifications

do not compromise the health of prior working software.

Quality is about what was working well continues to work well plus

what is newly implemented does indeed meet the needs and

expectations. Note that the latter needs to be done before it turns into

the former. This means it is imperative that we have potent scenarios

to weed out potentially interesting issues first, and then constantly

assess to check the health. This needs to be done not just at a lower

level of technical features but also for higher order end flows, with

effective scenarios that span across the levels. A subset of these

scenarios(at the least) could become health checks, are prime

candidates turned into automated scripts. Delineate behaviour

validation from the front-end so that scripts may not suffer from

frequent updates due to changes done on the human interface.

Be sure that it is done well by exercising potent scenarios and then assess

frequently that it is not compromised.

20



do SmartQA. The HyBIST Approach.

Suggestion #4 Focus on writing less, to do more

Testers spend considerable time on documentation especially in the

phase of design often driven by templates. Design truly is intellectual

and creative and less conformant to typical low level templates which

relegates it to a procedure.

In cases of regulated testing detailed documentation is necessary and

often serves as a system of records. The act of writing should not just

serve as a record for the future, it should serve as stimulating

interesting ideas & thoughts for smart QA. It is about note-taking to jot

down interesting observations, potential issues, scenarios to try out,

suggestions & ideas while examining spec/product before it is

formally distilled into a staid document.

It requires deep intellectual effort to think, explore, question, design,

and write as minimally as possible. It is necessary in these times to

move away from thinking of test documentation as a system of records

that may be useful in the future to note-taking. This helps to immerse

and sharpen thinking, use the early test cases as a first cut to evaluate

and then refine. The practice of laborious documentation using a

template or as part of a test management tool is arcane. The time we

gain from not doing detailed documentation can be put to use to doing

things that are far more valuable like including smart tooling &

automation.

21



do SmartQA. The HyBIST Approach.

Focus on doing great work first and then protect the future. SmartQA is

about lightweight note-taking, lean documentation and nimbleness to be

effective & efficient.

Suggestion #5 Focus on test potency, not quantity

As an engineering manager, you’re always keen on understanding or

knowing how good the tests are. Is it sufficient? Is it adequate? Does it

have good coverage? Merely knowing the number of test cases and

their traceability does not add significant value. What is needed is

something that gives confidence in the quality of tests before

commencing testing.

Smart test analytics helps in building trust & confidence in the

coverage of tests. What would this entail? It is about knowing if we

have covered all points of view- users & usage, environment,

attributes, early-stage entities to end to end flows, and impact of

change.

1. Do we have test cases from a technical, business (end-to-end)

view?

2. Do we have functional and non-functional test cases?

3. Do we have specific test cases for specific environments?

4. Do we have test cases that assess correctness & robustness?

22



do SmartQA. The HyBIST Approach.

5. Do we have feature level and end to end flow test cases?

6. Do we have test cases from different end users’ point of view?

HyBIST quality levels sharpens focus on defects to come with a broad

and deep net. It helps come up with a good set of initial test cases that

are continually enhanced as test sessions progress to enhance

coverage. It is not about more test cases(quantity), it is about being

potent, minimal yet adequate.

Test potency is about good defect finding power, less escapes, lesser

rework, and superior utilisation of capacity to deliver faster. This is what

SmartQA is all about.

Suggestion #6 Focus on quality of issues, not number

As engineering managers, we look at defect analytics via

charts—defect rates, distribution, and so on. They give us a good

bird’s-eye view of bugs with respect to time, status (i.e., closed or

open) and distribution by entities (features, flows, requirements).

Is that good enough? Seeing defect distribution by types i.e. in which

quality level as in HyBIST gives a better insight into product quality, a

reflection of test effectiveness. How can we view this? What can we

look at?

23



do SmartQA. The HyBIST Approach.

1. Look at issues from new entities versus those enhanced or fixed.

This helps discern if we are doing a good job in building or a bad job in

enhancements or fixes.

2. Look at distribution of issues in normal flows vis-à-vis exceptional

cases, This helps us to understand that if the working system could be

robust i.e can withstand abuse.

3. Look at issues by functionality & attributes too, that we are

validating end user expectations and not functional needs alone.

4. Look at distribution of issues from user’s or persona’s perspective,

how may it affect end users (persona viewpoint) rather than just

product view point. Note we can also analyse from an ‘environment

viewpoint’ too.

5. Finally, look at issues by entity granularity, i.e. lower level features

vs. end to end flows.

Mere analysis of issues in terms of numbers, distributions, and rates is

not sufficient, diving into quality of bugs via smarter stratification

helps to enhance effectiveness & efficiency, to accomplish more with

less.

It is not just the number of issues, it is the quality of issues found that

matter.

24



do SmartQA. The HyBIST Approach.

Suggestion #7 Focus on the key measure- “Escapes”

Metrics help in understanding activities and outcomes and help us

improve by changing behaviour. One of the most powerful metric that

acts like a mirror is “defect escapes” i.e. defects that have been missed.

HyBIST views testing as a fractional distillation with filters of varying

porosity to catch different types of bugs at different levels. Given that

filters are porous, defects will leak and escape, measuring this helps in

fine tuning the act of filtration. Early stage filters are pre-code & early

stage code, defect leakages are reflection of requirements validation

and development testing while later stage filters are a reflection of

professional QA validating the whole system.

It would be useful to analyse three categories of leakages periodically-

requirements to construction, development to test, and test to release

so that we constantly tune the filter, to reduce rework and unshackle

capacity.

Measures or metrics help in understanding facts objectively to course

correct, to improve and most importantly change behaviour which is a

serious transformative act. Defect escapes are the latter, very powerful,

in a transformative sense to become smarter.

It is about smart containment, enabled by smart escape analysis to

change the behaviour from finding to assuring.

25



do SmartQA. The HyBIST Approach.

Suggestion #8 Preempt issues, assure not just detect

Testing is more often seen as an intense activity of evaluation. Is it just

about executing or running? Not really. Testing requires good

preparatory work before the act of evaluation, it requires the tester to

understand the larger context, then figure out scenarios to evaluate

and discover some 'interesting' cases during evaluation.

Prep work is understanding the big picture, asking interesting

questions about who, where, what, why, what-if, and so on. In the

process find missing information, need clarifications, discover

potential issues, jot down observations, and come up with suggestions

too. We are not just viewing testing as an act of evaluation, but pulling

it forward. This process helps clarify things and preempt issues.

It also helps us understand the impact of change, of feature addition or

modification, in the process of exploration, meander into rabbit holes

to understand interconnections and impacts to validate deeply.

Validation is not a physical act of execution; it is intellectual, an

invisible process that goes on in one's brain to figure out possibilities

and probabilities of what may go wrong, what may happen that is not

yet spec’d out, and come up with interesting questions to answer to

preempt, to assure. Just like for good health, activity or exercise is good

for the body, but rest and sleep are equally important.

26



do SmartQA. The HyBIST Approach.

Testing is not always an intense activity, it is silent thinking, quietly

exploring in the mind’s eye too, to visualise correct flows and see issues

too, to preempt.

Suggestion #9 Characterise defects first, then do RCA

Often we analyse issues from the perspective of improvement of how

we can do better by trying to identify root causes. What I have seen in

RCA or Root Cause Analysis is an extraordinary amount of fine-grain

detail bordering analysis-paralysis in coming up with the self-evident

root cause(s) i.e. need more time/effort/capability. These can be

discerned without detailed RCA, right?

When we analyse, it may be smart to look at it from these dimensions:

1.From actions to do rather than figure out reasons

2.From SDLC stages to figure out who needs to act

3. From new implementation or enhancement of where to tighten

A smarter defect analysis would therefore be:

1. Howmany missed out due to carelessness?

2. Howmany missed for lack of scenarios/cases?

3. How many due to non-availability of environment/customer data

sets?

4. How many due to lack of clarity/ambiguity/misinterpretation of

spec?

27



do SmartQA. The HyBIST Approach.

5. Howmany due to “well, never thought about this situation”?

6. If it was due to input spec, how can we preempt this?

7. If it was due to poor construction, how can we make it robust?

8. If it was due to poor test quality, how can we strengthen it?

9. Was it due to enhancement or due to new implementation?

10. Was it due to incorrect judgement of correctness?

Smarter analysis would go a long way to get a better insight into the

type of defect and why it may have been missed out enabling one to

learn, improve, and become smarter.

Purposeful defect analysis is like a perfect mirror that enables one to

continually adjust and discover the optimal path, the hallmark of

smartness.

Suggestion #10 Unshackle capacity to handle regression

We want to build rapidly but have a problem with capacity. What can

we do? As we speed up the product development cycle by embracing

Agile, it is a challenge to ensure that the quality of each sprint is not

compromised. What is the challenge? The challenge is to avoid

compromising health by frequently adding, updating, and modifying.

In a sense, we end up doing far too much regression testing. Secondly,

as we speed up, the challenge seems to come from a lack of time due to

28



do SmartQA. The HyBIST Approach.

the time crunch to test. Well, let's dwell on what is being tested. Is it

execution?' No, because it involves understanding what was intended

by reading, reviewing, discussing, exploring, and questioning, and all

these take time. Then, come up with interesting scenarios to evaluate,

and then automate as appropriate to convert them into automated

scripts. Then, of course, evaluate using automated tests using humans,

also doing disciplined vs. ad-hoc tests. As time gets crunched, we seem

to be running into a capacity problem, and to resolve this issue, fix one

component regression with automation.

That turns out to be challenging because automation also requires

meaningful effort and further crunching capacity. What do we do? Here

is why I think it's necessary to figure out if it requires evaluation at a

later stage: Could we have done something earlier? Could we have

looked at possibly finding some of these issues earlier, maybe by

pre-empting, interrogating, or reviewing? Let's say the requirements

given to us are user stories, no interrogating stuff to figure out what-if

scenarios, or at the implementation stage by developers for certain

kinds of issues.

So we can't just add more capacity to solve this capacity problem

because it requires more money, which is always a scarce commodity.

So it is necessary to get smarter to be able to accomplish this. Smarter

29



do SmartQA. The HyBIST Approach.

means doing less, doing earlier, exploiting technology, not doing it,

preventing it, etc.

Solving the capacity problem is not about adding more. It is about

figuring out (a) how to do less, (b) how to do it earlier, (c) what not to

do, (d) what to do manually, and (e) what can be automated using tools

or technology. Considering these things together and addressing them

can help solve the capacity problem. The capacity issue is a challenge

that cannot be compromised to result in defect escapes.

Suggestion #11 Exploit intelligence, artificial and human

In today's world, artificial intelligence has usurped human intelligence.

Is there a role for human intelligence in testing? We have dichotomized

testing into manual and automated. Sadly, the word manual is highly

incorrect. It should be human testing, i.e., using human intelligence to

test or validate, while automated testing is about using technology,

tools, and machines to validate software.

Now we have the new cat out of the bag: AI, which has recently made

waves with generative AI. We think that this will replace human tests.

So, let's get back to the subject of what is exploiting intelligence. There

are certain things that a machine (technology) can do very well, and

one needs to be smart enough to exploit them.

30



do SmartQA. The HyBIST Approach.

If we can do faster using a machine, then do so. If some things can be

observed, perturbed, or exercised by using a tool or technology, then it

is 'smart' to exploit it to do so. But understanding, figuring out

questions, connecting various parts to see the big picture and using

that to evaluate requires human intelligence. Today, this can be

augmented with AI systems and software, it is like getting help from an

intelligent assistant. But figuring out the test approach, understanding

behaviour and identifying the conditions, understanding the human

psyche, the environment in which they use it, and the constraints,

expectations, and potential mistakes that one might make are still

things that require human intelligence.

It is necessary to exploit human intelligence, as testing is not merely a

notion of evaluation at the end. It demands a systems-thinking

approach to "look at individual trees but also understand the larger

context of the forest". Human intelligence plays a definitive role, and

today it is aided by the intelligent tools that are more supplemental

than replacement.

Repetition of tests and probing that is hard to be done by a human are

those that demand tools/technology i.e., machine intelligence, that we

state as automated testing. A harmonious mixture of machine

intelligence and human intelligence helps deliver clean code. Testing is

31



do SmartQA. The HyBIST Approach.

not always postcode-based; it is about doing earlier to detect, prevent,

or to enhance clarity.

Testing is more than assessing whether something is correct or

incorrect. It is an exploration into the unknown, of discovering

interesting stuff that demands an intelligent human.

Suggestion #12 Expect more out of a professional tester

Do you view testers as one who executes tests and reports issues?

Great managers expect more than just bugs, they expect impact/risks,

suggestions, ideas, interesting observations from multiple viewpoints

of users, product, environment etc.

When managers expect from QA folks a deep ownership mindset, then

the way QA folks look at the product will be quite different, with an

eagle eye for issues that may inhibit work, and ideas/suggestions to

enhance quality of work. Their mindset changes, now sharply focused

on great user experience and higher business value.

With an ownership mindset, it is no longer just about executing test

cases or writing test scripts and finding issues. It is a mindset that

becomes sharply critical to identifying aspects that could be done

better; suggestive, observing every minute thing, getting into the skin

32



do SmartQA. The HyBIST Approach.

of end users, and therefore not just evaluating, validating, or

executing.

When an engineering manager expects ownership mindset in them,

then testers will see their job as more challenging and value-adding,

moving from postcode assessment to earlier state critiquing, ideation

and suggestion forcing them to think: “What is the business value that I

have added to the test, to the product, to the customer and their

business, to my organisation and its business?”

Expect from QA how to enhance experience in addition to finding issues,

so that they may have a deep ownership mindset.

Suggestion #13 Detect early without disrupting dev rhythm

A compromised ‘unit test’ puts unnecessary strain on QA folks who

seem to be compelled to go after these issues at the expense of system

test.When we find issues in the product/app especially those that can

be caught earlier, we focus on more rigorous dev test with extreme

focus on automation. Seems logical, but given that a developer is

already under intense time pressure, is it the right approach?

The typical approach of “more early testing” is harder to implement.

Testing building blocks should be easy and quick, in, not so well done

in reality.. A smart lightweight approach that does not create more

33



do SmartQA. The HyBIST Approach.

work for developers or upset the development rhythm is what is

paramount to success. Great quality early stage code is not about doing

more testing, it is about doing less testing, by enabling sharper focus

on ‘what-can-go-wrong’, ‘have-you-considered-this’.

What if we changed our views?

1. That testing need not be limited to dynamic evaluation, it could also

be done via static proving. That ascertaining correctness is not only via

dynamic execution of test cases but by thinking through what can

happen with various data sets.

2. Instead of starting with conformance test cases, start in the reverse

with non-conforming data sets first. Prove that the system rejects bad

inputs before we evaluate for conformance.

3. Instead of designing test cases for every entity, use a potential defect

type (PDT) catalogue as a base to check for non-conformances first

(HyBIST Smart Checklist).

Do better developer testing by being friction-less, not upsetting the

development rhythm, by doing less smartly. Given that dev test is

largely about detecting issues in quality levels L1-L4 (of HyBIST), use

Smart Checklists (HyBIST Aids) to sensitise & prevent or detect easily.

We don’t need a jackhammer to hit a nail!

34



do SmartQA. The HyBIST Approach.

Chapter #5: do SmartQA. The way forward.

The SmartQA Promise

The SmartQA promise to engineering managers are:

- Unshackle capacity to accomplish more with same/less

- Superior coverage to enhance test effectiveness, lower rework

- Objective health assessment to aid better decision making

- Provide rich insights to foster practice improvement

35



do SmartQA. The HyBIST Approach.

SmartQA Outcomes

Left shifting : Improve DevTest

Reduce defect escapes from Dev to QA by 60% & 25% in two software

product companies.

Enhance quality of user stories

Sensitising & preventing issues on user stories i.e. testing

requirements in a German product engineering major. Sharpen

sensitivity to issues in Agile sprints.

QA Practice Improvement

- Enabled a Chipcard major to find dormant issues that would

have derailed certification & improved coverage by 10+% on

their already well tested code.

- Enabled large Japanese SI to rollout large applications (instant

cutover) with no hitch.

- Vastly improved test assets and practice of QA to instil high

confidence in senior management of a complex product

- Significantly enhanced test practice in a large product major

(300 people world wide engg team) making their Agile journey

sharpen their focus on tech debt. Changed mindsets, re-jigged

practice, helped in automation strategy and sharpened focus on

measurement and actions.

36



do SmartQA. The HyBIST Approach.

Embracing SmartQA

First “do WELL” - cover more, enhance coverage, sharpen Dev/QA

focus, use internal defect escapes as mirror.

Secondly “do QUICKLY” via smart in-sprint automation, immersive

session testing enabled by ‘write less, do more’

Thirdly “do EARLY” - adopt smart checklists to review/question early

stage artefacts to find potential issues/holes early to shift left smartly

Lastly “do LESS” - leverage test assets (strategy, scenarios, issues)

STAG Software enables organisations to embrace SmartQA via:

1. HyBIST Courses for Product owner/Manager, Dev & QA

2. SmartQA Consulting & Advisory to help implement practice

3. doSmartQA - HyBIST test analysis & design tool

4. SmartQA Coaching for Test Leads

37

http://cleansoft.in
https://stagsoftware.com/smartqa/


About the author

Thiruvengadam Ashok is the Founder & CEO of STAG Software

(stagsoftware.com), a pure play test boutique. Passionate about

problem solving, he has been focused on methodologies to

scientifically test software and is the architect of HyBIST. A believer of

"Simple is complex' , he revels in taming complexity and enjoys the

learning and discovery it offers. A strong believer in opposites, the Yin

and Yang, he strives to marry the western system of scientific thinking

with the eastern system of belief and mindfulness.

He is an alumnus of Illinois Institute of Technology, Chicago and

College of Engineering, Guindy. An avid long distance cyclist and ultra

marathoner he loves writing poems on various topics including

testing!

He can be reached on LinkedIn at linkedin.com/in/ashokstag.

https://www.stagsoftware.com
https://www.linkedin.com/in/ashokstag

