

A Transformative Guide to Smarter Quality Assurance

Wisdom on Smart Assurance offers a transformative approach to quality
assurance, moving beyond traditional methodologies to deliver smarter,
more efficient results. This emphasises the integration of human ingenuity
with machine precision, enabling readers to achieve excellence in QA
through thoughtful strategies, practical insights, and timeless wisdom.

Key Themes

• The Thinking Mindset: Learn to balance logic and creativity, empathy and
precision, to cultivate a mindset that fosters clarity and innovation in QA
practices.

• Crafting Brilliant Code: Explore actionable principles for writing robust,
maintainable, and elegant code that minimises errors and maximises
quality.

• Smart Test Lifecycle: Discover innovative approaches to test design,
validation, and organization, focusing on achieving impactful results with
minimal effort.

• Wisdom in Testing: Adopt a wisdom-driven approach to QA that
emphasises prevention, sensitivity to potential issues, and strategic
validation.

Core Highlights

• See the Big Picture: Evaluate systems from multiple perspectives—users,
environments, attributes, and behaviours—for a holistic assurance
approach.

• Minimalism in QA: Do less but accomplish more by focusing on
purposeful test cases and leveraging intelligent tools.

• Building Resilience: Design systems that are robust and testable, enabling
rapid debugging and reducing dependency on exhaustive testing.

• Transforming into a Smart Tester: Gain practical guidance on becoming a
modern, tech-savvy QA professional who thrives in Agile environments.

About the author

Thiruvengadam Ashok is the CEO of STAG Software Private Limited & Co-Founder of
Pivotrics, based in Bengaluru, India. Ashok has dedicated his career to the pursuit of
quality assurance in software, continuously evolving his approaches to match the needs
of modern systems. He is the creator of HyBIST, an innovative approach to SmartQA that
has revolutionised how teams approach hypothesis-driven testing.

Ashok’s professional life is deeply intertwined with his personal philosophy. A
passionate ultra-distance runner and long-distance cyclist, he applies the principles of
endurance and exploration to his work, constantly seeking out new ways to improve
software quality. He is also an avid wordsmith, using his love of language to weave both
poetry and technical innovation into his life’s work.

He holds an M.S. in Computer Science from the Illinois Institute of Technology, a
Bachelor's degree in Electronics and Communication Engineering from the College of
Engineering, Guindy, and a Postgraduate Diploma in Environmental Law from the
National Law School of India University, Bangalore. His life maxim—"Love what you do &
Do only what you love"—is reflected in everything he undertakes, from professional
projects to personal passions.

Copyright © 2025, Thiruvengadam Ashok
All rights reserved.
No part of this publication may be reproduced, distributed, or transmitted in any form or
by any means, including photocopying, recording, or other electronic or mechanical
methods, without the prior written permission of the publisher, except in the case of
brief quotations used in reviews and certain other noncommercial uses permitted by
copyright law.

Disclaimer:
The information contained here is for educational and informational purposes only.
While every effort has been made to ensure the accuracy of the content, the author and
publisher make no representations or warranties regarding the completeness, accuracy,
or applicability of the information provided. The strategies and methodologies
described are for informational purposes and should be adapted to individual
circumstances as necessary.

Trademarks:
All product names, logos, and brands mentioned in this book are the property of their
respective owners. Use of these names, logos, and brands does not imply endorsement.
HyBIST is the intellectual property of STAG Software Private Limited.

Edition: First edition, 2025.

TABLE OF CONTENTS

The Thinking Mindset for Smart Assurance 6

The Doing Aspects for Smart Assurance 8

Crafting Brilliant Code - Assuring Early 11

Smarts in the Test Lifecycle 13
SmartQA Thinking 13

Smart Understanding 13

Smart Design I 14

SmartQA Design II 15

Smart Validation 16

Smart Plan 18

Team Structure for Smart Assurance 19

Enhance Productivity 20
See the big picture, before you jump in to test 20

Map who uses what, to understand user needs 20

Map attributes to entities, to identify expectations 21

Create environments by combining elements & values 21

Link related entities via associations & compositions 21

Do a simple focused plan for every test session 21

Dive deep to understand an entity well 21

Rapidly design scenarios and refine 21

While you execute tests, observe & refine 22

Organise scenarios well to be effective 22

Analyze test scenarios for effectiveness 22

Analyze execution progress constantly 22

Analyze product quality at end of every session 22

Transforming into a Smart Tester - Tips 23

SMARTQA WISDOM ON SMART ASSURANCE

THE THINKING MINDSET FOR SMART ASSURANCE
(from 5 Thoughts for SmartQA)
It takes a brilliant mindset, intelligent exploration, diligent evaluation, keen observational
skills, tech savviness and continual adjustment. It is about being logical yet be creative, it
is about being disciplined yet be random, it is about exploring the breadth and depth, it
is about understanding deeply and also finding blind spots about being bundled by
time but be unlimited/unbounded with the possibilities. Doing SmartQA is about doing
mindfully, in a state of brilliant balance.

1 Embrace multiple thinking styles
Inculcate the deductive ability of a mathematician, creativity of an artist, mindset of an
engineer, value perception of a businessman, technical savviness, empathy,
doggedness and nimbleness.

#2 Analyse well, exploit tools for doing
Humans & Machines : Doctors & diagnosis - In today’s medicine, we know that machines
play a huge part in diagnostics and treatment. They help us see internals more clearly,
enable us to get to the hard-reach parts, perform rapid tests to analyse problems ,
monitor tirelessly to help us correct our actions. So is the doctor’s role redundant? Ouch
no! The skill of the doctor in diagnosis and treatment be it via medicine or surgery is far
more required now in the complex world of disease, business and law. To assist in this
ever increasing complexity, machines are becoming integral for the job.

Much like the skill of a doctor to diagnose with exploiting the machines in the process.
“Doing SmartQA”s a brilliant combination of “human powered and machine assisted” .
The WHAT to-do is human while HOW-to-do is powered by machine/tools.

#3 Adopt minimalism
Minimalism has always been a guiding principle—doing less work while achieving
superior outcomes. There’s no preference for an excess of test cases or the resulting
need for tools to manage them. Tools, however, are exploited to deliver brilliant work.
This philosophy aligns perfectly with the concept of 'doing SmartQA.'
In discussions about left-shifting, TDD, and finding issues earlier, the focus often shifts
toward increasing unit tests. But is the objective to create more tests, or to produce
cleaner units? The aim should be heightened sensitivity to issues through TDD, writing
better code from the start, and using cheaper static methods to catch what might be
missed—before resorting to costlier automated unit tests.
SmartQA is fundamentally about ‘not doing’—about doing less, but smarter. It’s not
about doing more and accumulating tools but about sharpening sensitivity, cultivating
good coding habits, leveraging mental aids like smart checklists, and using software

6

SMARTQA WISDOM ON SMART ASSURANCE

tools to handle the heavy lifting of testing. After all, isn’t wellness more desirable than
expending effort diagnosing potential illness? And wouldn’t you prefer a doctor who
checks thoroughly before outsourcing diagnosis to machines?
Strive to prevent issues, embed testability, review code carefully, use smart checklists,
write minimally, regress intelligently.

4 Have a mindset of brilliant engineering
Is testing merely an act of uncovering bugs? Certainly not. It is a mindset focused on
clarifying thought. When developing something—such as code—a smart testing mindset
enables stepping outside the role of producer and into the shoes of end users. It fosters
empathy, helping to see their perspective, appreciate their environment, and
understand what might go wrong, ultimately leading to cleaner code.
In the worst case, hooks can be placed within the code to provide insights into how it is
being affected, allowing for later examination and refinement. SmartQA is not just about
finding bugs; it is about adopting a mindset of "brilliant engineering."

Step into end user’s shoes, architect/design robustly, inject code to aid testability, strive
to test minimally, do test related tasks lightweight.

5 See better, cover more, test less
A well-rounded ‘world view’ is key to achieving excellent coverage in testing. But is
coverage limited to execution alone, or does it enhance our ability to see better?
Coverage is about gaining a clearer perspective
from all angles. It goes beyond simply
determining whether tests could be or are
effective. By adopting viewpoints from USERS,
ATTRIBUTES, ENVIRONMENT, CODE, and
ENTITIES, we gain multidimensional insights,
allowing us to deliver brilliant code with less
testing and validation. This perspective also
significantly improves our ability to evaluate the
quality of test cases and the testing process itself.
SmartQA is not merely about execution; it is
about empowering better vision, enhancing
sensitivity, and achieving excellence.

Continuously see and assess product from multiple views – USERS, ATTRIBUTES,
ENVIRONMENT, CODE, ENTITIES

7

SMARTQA WISDOM ON SMART ASSURANCE

THE DOING ASPECTS FOR SMART ASSURANCE
(from 5 more thoughts for SmartQA)
What does it take to do SmartQA? Thoughtful pause, multidimensional thinking,
sensitivity and awareness and designing for robustness & testability. It is about pausing
to speed up, it is about thinking multidimensionally, it is about being sensitive and aware,
it is about designing for robustness and testability to doing SmartQA.
Doing SmartQA is about visualising the act in one’s mind and taking steps to being
robust and enabling rapid and easy validation.

1. Pause to speed up
Before testing, pause and ask: what is being tested, for what purpose, and in what
environment? If clarity is lacking, explore rapidly to dig deeper and understand from the
user’s point of view and the system’s architecture or construction. Take a moment to
gather thoughts on which issues to target and how to approach them, then proceed to
uncover them, leveraging tools as needed. After all, SmartQA is about fostering clarity to
visualise potential issues before evaluating rapidly.
Pause to accelerate.

2. View system from multiple angles
A recent conversation with a senior engineering manager in a product development
organization highlighted an interesting perspective. The manager, a strong advocate of
code coverage, explained that he focuses on achieving close to 100% code coverage as
the sole measure of quality and a way to implement shift-left. Makes sense, doesn’t it?
After all, ensuring that all written code is executed at least once and validated seems
both logical and necessary.

But what are the fallacies in this approach?
1. It assumes that all the necessary code has already been written.
2. Non-functional aspects of the code cannot be fully validated.
3. It presumes that the implemented code aligns perfectly with what users actually

wanted, even if the code works flawlessly.
4. The number of paths to cover at the highest level of user-oriented validation is

overwhelmingly large—nearly impossible to cover entirely.

Code coverage is indeed a necessary condition, but it is far from sufficient. Doing
SmartQA demands multidimensional thinking, examining the system from various
angles. This includes internal perspectives such as code, architecture, and technology,
as well as external ones like behavior, end users, environment, and usage. SmartQA

8

SMARTQA WISDOM ON SMART ASSURANCE

involves making thoughtful choices about what to validate earlier or later and what to
prevent or detect statically.

3. Be sensitive and aware
Be sensitive and aware to issues you encounter and potential causes of issues, after all
issues creep in due to untold expectation, accidental omission, quiet assumptions,
incorrect implementation, inappropriate modifications, interesting side effects,
deliberate abuse, and innovative usage.

A heightened sensitivity enables us to question, analyse, clarify and validate. Doing
SmartQA is not just finding issues, but sharpening one’s senses to be able to smell these
and spot them from afar or near before they hit us. It is about elevating QA to be far
more valuable to business success.
Sharpen your senses to smell better!

4. Design for robustness
Doing SmartQA is not just about evaluation; it is about enabling the code being built to
be robust. It ensures resistance to errors, building firewalls into the code, and
guaranteeing that everything required is in good condition before consumption. This
means data (inputs) and processes are clean, the operating environment is stable,
resources are available, and dependencies are functioning properly.
The goal is self-protection. When faced with irritants, there are three choices:
(a) reject them and refrain from performing the intended task,
(b) flag them (log) and still refrain from performing the intended task, or
(c) intelligently scale down and perform a reduced version of the task.
The key focus is on robustness—remaining unaffected by inputs, configurations,
resources, or dependent code. Designing for robustness fosters sensitivity to potential
issues and ensures avoidance of being cornered by unexpected challenges.

Untold expectation Did not know they wanted these, as they did not communicate it.
Accidental omission They missed stating it clearly.
Quiet assumptions Filling in the gaps quietly, without confirming.
Incorrect
implementation

Mistakes made during transformation to code.

Inappropriate
modifications

Making fixes without fully appreciating the larger context.

Interesting side
effects

Innocuously affecting others, without realizing they are coupled.

Deliberate abuse Wantonly using it incorrectly to push it beyond limits and break it.
Innovative usage Used in a very different context that was never anticipated.

9

SMARTQA WISDOM ON SMART ASSURANCE

Don’t just test, design system robustly

5. Design for testability
Not only is designing the ‘how-to-do’ essential, but enabling ‘how-to-examine-the-
doing’ is integral to SmartQA. It involves facilitating the ability to test code easily and
quickly identify what went wrong to expedite debugging.

Hooking into code to allow input injection for stimulation and verifying the correctness
of outcomes is central to SmartQA. Incorporating traces that can be logged and toggled
on during testing or debugging and off in production exemplifies SmartQA. Embedding
‘self-test code’ represents one of the highest forms of testability.
SmartQA is fundamentally about enabling the ability to validate effectively!
Hook in code to aid testability!

10

SMARTQA WISDOM ON SMART ASSURANCE

CRAFTING BRILLIANT CODE - ASSURING EARLY
(TEN tips for a developer to enable delivery of brilliant code)
Great code is not result of mere unit/dev testing at the early stage. It is really a mindset
that is key to producing brilliant code. Here I outline ten things that a developer should
be very sensitive to enable the delivery of brilliant code.

 1. Be focussed
In each code fragment, do one thing well. Attempting to do many things can become
messy! Stay single-minded in what you are solving with this code.

2. Be defensive
Accidents happen, inputs may be tainted. Prepare for eventualities, be defensive in your
style of coding. After all, it is your responsibility to stay safe!

3. Be clean
Reduce clutter in code, it is just about somehow getting the code to do work.
Organisation, structure matters.

4. Be malleable
Avoid magic numbers, hardcoding. Be soft and pliable so that you can modify, extend
easily.

5. Be expansive
Strive to understand the larger context where your code will be used, so that your code
delivers value. ‘See the forest for the trees’ too.

11

SMARTQA WISDOM ON SMART ASSURANCE

6. Be a good citizen
Respect the environment in which the code runs, consume resources only what you
need and release them when you need don’t them.

7. Be maintainable
Code begs changes to be done the minute you execute it. Make it maintenance friendly.
Also, remember that it may just be you who will maintain the code. Well with time, one
also forgets why some things are, the way it is.

8. Be efficient
It is not just about the functionality, it is about all other ‘-ities’, like security, reliability,
compatibility, performance etc. Be sensitive to these aspects while you are coding.

9.Be testable
The ability to ascertain if the code is behaving correctly is paramount. Putting it hooks to
enable testability enables you to write great code.

10.Be beautiful
Finally great code is not just text that when executed, works correctly. Treat it as a work
of art that you produce. Let the choice of names, the structure, the organisation have a
sense of aesthetic appeal. After all brilliant engineering becomes art.

12

SMARTQA WISDOM ON SMART ASSURANCE

SMARTS IN THE TEST LIFECYCLE
(7 Pictures to ‘Doing SmartQA’)

SmartQA Thinking
Yesterday a good friend of mine told me about his recent conversation with a
senior engineering manager in a product dev org. The Sr Engr Manager, a
great believer in code coverage told him that he just focuses on covering close
to 100% code as the only measure to ensure quality, and as a means to
implement shift-left. Absolutely right, isn’t it? After all, ensuring all code
written is at least executed once & validated is logical and necessary.
What is/are the fallacy in this? (1) Well you have assumed that all code
needed has been written (2) Well, non-functional aspects of code cannot be
completely validated (3)Well, it assuming that this is what users really
wanted, even if code is working flawlessly (4) Well, the number of paths to
cover at the highest level of user oriented validation is just to many to cover,
next to impossible! Code coverage is a necessary condition but simply not
sufficient.
Doing SmartQA requires multidimensional thinking, of looking of the system
from various angles both internal in terms of code, architecture and
technology and external in terms of behaviour, end users, environment &
usage and then making appropriate choices of what to validate later or earlier
and what to prevent or detect statically.

Smart Understanding
Prevention arises from good understanding. Detection, too, depends on good
understanding—understanding what is needed, what is stated, and what is implemented.
Doing SmartQA demands mental clarity to visualize what is intended, what is present,
and what may be missing but could enhance the experience. This clarity drives the
ability to question effectively, build better, and both prevent and detect issues. Testing,

13

SMARTQA WISDOM ON SMART ASSURANCE

at its core, is about discovering what should be there but is not, what is there but is
incorrect, and what is present but should not be. Ultimately, it is about understanding
the impact of changes, whether within the system or external to it.

Smart understanding involves scouring the "landscape" to grasp the overall context and
static structure of how something is built, followed by a "deep dive" to comprehend its
intended dynamic behavior. Landscape and deep-dive approaches serve as powerful
mental tools for rapidly exploring a system and achieving SmartQA.

Smart Design I
Doing SmartQA is not merely about evaluation; it is about enabling code to be robust. It
involves building resilience to prevent errors from creeping in and coding-in safeguards.
The aim is to ensure that everything needed is in good condition before it is consumed.
This means ensuring clean data (inputs), clean processes, a stable operating
environment, available resources, and functioning dependencies.

14

SMARTQA WISDOM ON SMART ASSURANCE

The focus is on self-protection. How should irritants be handled when they arise? There
are three choices:
(a) Reject them and refrain from performing the intended task.
(b) Flag them (log) and refrain from performing the intended task.
(c) Intelligently scale down and perform a reduced version of the task.
The key is to remain robust—unaffected by inputs, configurations, resources, or
dependent code. Designing for robustness cultivates sensitivity to potential issues and
ensures preparedness to avoid being cornered by unforeseen challenges.

SmartQA Design II
Test design deserves attention. The focus often leans heavily toward execution,
emphasising the ability to cover more. This has shifted priorities toward how frequently
tests can be executed, driving an emphasis on automation. It’s worth stepping back to
revisit the primary objective: delivering clean code. Achieving this requires a deeper
sensitivity to the quality of tests, where design plays a critical role.
So, what is a smart approach to designing good scenarios? Ideally, it involves creating a
few scenarios that can uncover the most significant issues. Smart design entails
examining the system from multiple perspectives to ensure:

15

SMARTQA WISDOM ON SMART ASSURANCE

"I want | expect | would-like behaviours to satisfy needs that are implemented well, comprehensively covered, and
capable of performing effectively in my environment without side effects."
From there, decide what to prevent, detect statically, or test—whether through human
effort or machines. Focus on the intent first, then on the activity.

Smart Validation
The approach to software validation has traditionally been categorized as either
‘manual’ or ‘automated.’ However, a better distinction would be ‘human-powered’ and
‘machine-assisted.’ When choosing to validate without automation, what are some smart
ways of doing it?

There are four key approaches:

A Completely scripted
Fully understanding, designing, and then evaluating. Ideal
when specifications are clear and complete, relying heavily
on logical, left-brain thinking.

B Completely unscripted
Used in time-crunch scenarios or by casual testers. Involves
jumping straight into evaluation, guided by creativity,
experience, and sometimes luck.

16

SMARTQA WISDOM ON SMART ASSURANCE

The choice of approach depends on the context. Approach A might be suitable when
specifications are clear, while C or D work better for evolving systems or when
specifications are high-level. Approach B, though less structured, complements A, C,
and D as quick checks or to harness the power of randomness.

HyBIST (Hypothesis Based Immersive Session Testing) builds upon these approaches by
encouraging immersion in the act of evaluation, fostering a state of ‘flow.’ This session-
based method employs a suite of thinking tools to understand, design, and evaluate
with the primary objective of ‘doing less and accomplishing more.’

C Evolving script
An exploratory approach where understanding, design, and
execution happen concurrently, using a balanced mix of left
and right brain thinking.

D
Evolving script in
sessions

A clear objective is set for each session, focusing on specific
aspects like ‘only understanding,’ ‘understanding and
designing,’ or the full process. This approach leverages
both left and right brain thinking for maximum efficiency.

17

SMARTQA WISDOM ON SMART ASSURANCE

Smart Plan
A smart plan is simple and objective-based: identify what entity to test, what issue to test
for (by conducting which test), in what environment, by whom (in case of a team), from
whose point of view, and how to test (human-powered or automated). A concise plan
encompassing these aspects enables sharp focus and rapid evaluation, whether
through human efforts or by building nimble automated suites.
At a higher level, determining what kind of issues to uncover at different levels of
entities in specific environments constitutes a strategy. Meanwhile, identifying specific
issues for specific entities forms a plan. This approach facilitates designing two types of
scenarios:
1. Objective Scenario – Focused on outputs, these are simple one-liners outlining

what issues to uncover for which entity in a specific environment.
2. Executable Scenario – Focused on inputs, these are detailed sets of inputs used to

stimulate an entity to uncover specific issues in a given environment.

18

SMARTQA WISDOM ON SMART ASSURANCE

TEAM STRUCTURE FOR SMART ASSURANCE
Software engineers once developed code and tested it themselves. Over time,
dedicated QA teams became the norm, with testing being "owned" by these teams. In
modern times, driven by Agile and rapid development, this is merging back into
development, with dedicated QA teams becoming thinner.

An article in SD Times discussed Who owns QA? Is it the development organization or a
dedicated QA organization? What is the right fit?
What “dedicated QA” really means is that there is a focus on QA and testing. In a
software organization, specialists are necessary—whether they are analysts, architects,
developers, or testers. Dedicated QA doesn’t mean solely reporting into a QA
leadership role; it simply means having QA specialists with deep expertise in systems
validation.
So, what might be the right fit for building a Smart QA organization? QA can be seen as
a blend of Dev QA, System QA, and Solution QA, each with a unique objective in
validation.

Beyond validation, a dedicated QA (System/Solution QA) is well-suited to provide
enablement and governance. This includes tasks like setting up test infrastructure,
creating tooling frameworks, establishing processes, defining metrics, publishing aids,
conducting reviews, and improving the overall system.

19

SMARTQA WISDOM ON SMART ASSURANCE

ENHANCE PRODUCTIVITY
(39 tips to being productive – Do SmartQA)
Software tools help in increasing productivity by allowing us to do faster, cheaper and
better. But the most powerful tool “the human intellect” can help us do lesser ad
coupled with tools of speed, productivity scales geometrically. In these times of AI, it is
necessary to exploit HI (Human Intelligence) to do stuff beyond intelligent machines to
deliver a higher value. This article outlines 39 tips in thirteen sections to “Do SmartQA”.
“Productivity is a measure of your output divided by your input. Output is measured by
the importance of the accomplishment to your goals” says Scott H. Young in his article
What’s the Point of Productivity?. He also adds that people obsessed with productivity
often neglect the hard-to-quantify-but-ultimately-essential work that goes into
achievement, being driven by measurements on short-term output over things that
matter, but are harder to measure.
“Working longer hours is not a surefire way to get more stuff done. In fact, consistently
working too much invariably leads to a drop in productivity” says Karen Banes in 6
Habits of Insanely Productive People. Similarly, on a different note “Constantly re-
running automated tests helps us know that we are still good, but in the same place”.
“Productivity doesn’t mean doing the most, but getting the most from what you have
done” says Scott H. Young in another article 7 Habits that Seem Lazy (But Actually Let
You Get More Done.
In an era where we are obsessed with productivity, it is not about doing more, of being
busy that is deemed as high productivity. In fact it is the converse, of being smart, of
doing less and accomplishing more. Software tools help in increasing productivity by
allowing us to do faster, better and cheaper. But the most powerful tool “the human
intellect” can help us do lesser, coupled with tools of speed, productivity scales
geometrically.
In these times of AI, it is necessary to exploit HI (Human Intelligence) to do stuff beyond
the intelligent machines and deliver higher value. Here are THIRTY NINE tips arranged
in THIRTEEN sections to “Do SmartQA”.

See the big picture, before you jump in to test

Map who uses what, to understand user needs

Tip #1 Start with the WHO first, it may be a person or machine.

Tip #2 See features from a product angle, requirements from a user angle, and flows from a
business angle.

Tip #3 Guess attributes that may be expected and then refine.

Tip #4 Put yourself in the user’s shoes and ask what you need.

20

SMARTQA WISDOM ON SMART ASSURANCE

Map attributes to entities, to identify expectations

Create environments by combining elements & values

Link related entities via associations & compositions

Do a simple focused plan for every test session

Dive deep to understand an entity well

Rapidly design scenarios and refine

Tip #5 As you map requirements to a user, ask what attributes you expect.

Tip #6
In an enterprise system, there may be many end users; in a personal system, a
person may play multiple roles.

Tip #7 If they are clearly spelled out, map them.
Tip #8 Put yourself in the user’s shoes and think of attributes they might expect.
Tip #9 Look at similar/competitive products to identify attributes.

Tip #10 Elements could be OS, browsers, devices, network, DB, etc.

Tip #11
Values of elements could be versions of the same or different similar
types.

Tip #12
Create environments that are largely representative of real-life
deployments.

Tip #13 Think of association as “both affecting the same data.”

Tip #14 Think of composition as “output of one is the input to another.”

Tip #15 Being part of a sequence of activities is also composition.

Tip #16
A plan includes ‘what-to-test,’ ‘what-to-test-for,’ and possibly ‘where-to-test-
on.’

Tip #17 If deferring the environment to test on later, do so.
Tip #18 Let the list of tasks flow and assign them a session later.

Tip #19 Describe the entities tersely to understand better.
Tip #20 Identify conditions that define functional behavior.

Tip #21
Appreciate who uses this, what they expect, and how it interacts with
other entities.

Tip #22 Set objectives in terms of acceptance criteria and potential issues.

21

SMARTQA WISDOM ON SMART ASSURANCE

While you execute tests, observe & refine

Organise scenarios well to be effective

Analyze test scenarios for effectiveness

Analyze execution progress constantly

Analyze product quality at end of every session

Tip #23
Acceptance criteria are what you expect; potential issues are what you
don’t expect.

Tip #24
Combine conditions judiciously to create a good mix of positive and
negative scenarios.

Tip #25 While executing, look for interesting issues to enhance scenarios.
Tip #26 Empathize—put yourself in the shoes of end users to enhance scenarios.

Tip #27
Look for issues, but also identify opportunities to improve the user
experience and make suggestions.

Tip #28 Ensure a good distribution of scenarios across all quality levels & test types.
Tip #29 Ensure scenarios cover various users (personas).
Tip #30 Create suites tailored to specific business objectives.

Tip #31 Ensure scenarios test small features and big flows.
Tip #32 Include scenarios across all quality levels and test types.
Tip #33 Maintain a good mix of positive and negative scenarios.

Tip #34 Check if progress is being made, evaluating features to flows.
Tip #35 Ensure attributes are being tested in addition to functionality.
Tip #36 Confirm all entities are being tested as part of the progress.

Tip #37 Check for functional stability, covering features, requirements, and flows.
Tip #38 Assess robustness—ensure negative scenarios run clean.
Tip #39 Verify the product meets expected attributes, in addition to functionality.

22

SMARTQA WISDOM ON SMART ASSURANCE

TRANSFORMING INTO A SMART TESTER - TIPS
(TWELVE tips to become a modern smart tester)
The way we build systems has changed, both in terms of technology and the process.
The expectations of end users/businesses have changed in terms of speed of delivery
and in terms of expectations.

1.Become tech savvy. Know the insides.
Understand what happens behind the hood. Know what your system is composed of.
Learn to think of issues resulting from integration of various technologies, of different
systems that make your solution.

2. It is ‘-ities’ that is key. Go beyond functionality.
Yes, correctness of functionality is important. But in these times, it is ‘-ities’ that are key to
success. Well we know for sure how usability has become mainstream. We also know
‘compatibility’ is critical especially device compatibility of mobiles/tablets. Performance,
security, error recovery is now a given. So it is necessary to become adept in evaluating
‘-ities’ too.

3. Focus on value. It is not about activities.
What matters now is not how-many, it is really how-valuable. End users are keen on the
value-offering i.e. how does it help me do better, how does it ease my life..?

4. Automated test is basic hygiene now. Become comfortable with tooling.
Well it is expected that you exploit technology/tools to accelerate what you do and
replace what you do. So being comfortable with tools and rapidly able to exploit other

23

SMARTQA WISDOM ON SMART ASSURANCE

tools/languages to getting things done is expected. Tooling is no more an esoteric skill.
Remember it is not about ‘big’ tools, it is about also having a a nice ‘SwissKnife’ tool set
to enable you to do faster/better/smarter.

5. Be Agile. Respond quickly.
It is no more about days, it is about hours. Change your mental model to test in short
sessions, change your mental model to re-test far more efficiently, change your mental
model to focus on impact far sharper.

6. Test is no more just an activity. Make it a mindset.
As we morph to deliver clear code faster, it may not always be an explicit activity. It is
about having a ‘test/perfection mindset’ so that we built/craft code quicker and cleaner.

7. Go beyond our discipline. Copy from others.
Stay sharp and wide open to see how great quality/perfection happens in other
disciplines.Unabashedly copy and adapt. It is necessary to be non-linear. Be inspired
from lateral disciplines and humanities/social, nature, arts etc. to evaluate, to prevent, to
build better.

8. Don’t just do. Enable ‘how not to do’.
It is not just about evaluation anymore, it is about how we can prevent evaluation.
Enable building robust code. Enable better sensitisation of issues early. Do more ‘what-
if’ to build better code.

9. Go beyond software metrics. Measure in business context.
It is great to use measures of testing to guide the act of testing. Given that we are in the
age of speed and instant gratification, it is is very necessary to relate the software
measures to business & end user context to ensure success. For example (1) it is no
more just a performance metric, it is about how (say) response time affects the
business(end-users) positively (2) it is not about overall coverage alone, but about what
it means to the risk of the immediate releases.

10. Constantly unlearn.
Unlearning is a skill. The ability to constantly question if what we know is relevant and
drop it to make way for newer skills is paramount.

11. Abstract well. Visualise better.
Today the act of building systems is brilliant with excellent abstractions facilitated by
frameworks. The focus is on great clarity and the ability to reassemble/morph quickly,
much like ‘Lego’ bricks. The same is applicable for us test folks too. Abstract well (1) the

24

SMARTQA WISDOM ON SMART ASSURANCE

system and how it is composed (2) the issues you are going after and therefore the
strategy (3) test assets to facilitate continual adjustment (4)automated suites so that you
can flex it to suit the changing needs (5) test data so that it can be relevant for a longer
time.

12. Get out of the well. Be able to scale across.
What we do now is no more a silo related to evaluation. It is imperative to build/tweak
code, setup environments, deploy, assist in debug, help ideate features to improve
value, in addition to testing. Be able to do ‘everything’ to scale across.

25

“We are SmartQA evangelists. For over two decades we have
transformed how individuals, teams and organisations have
practised testing. We espouse methodology to test intelligently.
Our mission - Elevate to high performance via SmartQA.”

www.stagsoftware.com

The HyBIST Approach to SmartQA - MASTERCLASS
Testing is deep probing to seek clarity and in the process
uncover, preempt issues rapidly. The HyBIST approach enables
designing smart probes and probing the system smartly.
https://smartqa.academy/courses/smartqa-using-hybist

doSmartQA - AI based Smart Probing Assistant to interrogate,
hypothesise issues, design & evaluate user story or a set of
stories in a sprint rapidly. An assistant for smart session-based
testing based on HyBIST.
Download personal edition from here

SmartQA Musings - A gentle flurry of interesting thoughts on
smart assurance as a weekly webcast. A refreshing view of
assurance to broaden & deepen thoughts/actions.
www.stagsoftware.com/subscribe

SmartQA Biweekly - Ignite your curiosity with fresh insights,
thought-provoking ideas, and inspiring content delivered
straight to your inbox every fortnight.
www.stagsoftware.com/subscribe

26

http://www.stagsoftware.com
https://smartqa.academy/courses/smartqa-using-hybist
https://chromewebstore.google.com/detail/dosmartqa-personal-editio/npeempjncmpfiiknagfafkbklomdenjk
http://www.stagsoftware.com/subscribe
http://www.stagsoftware.com/subscribe

A rich collection of original content on smart assurance

SmartQA Wisdom - Profound nuggets of wisdom to think deeply, do
rapidly & smartly for Test Practitioners.

on Personal Growth
on Test Design
on Smart Understanding
on Mindset & Habits
on Problem Solving

Download from www.stagsoftware.com/smartqa-wisdom

SmartQA eBooks - for Sr Engg/QA managers, Sr Test Practitioner &
Young Test Practitioners too.

HyBIST at a glance

do SmartQA -The HyBIST Approach

High Performance QA

50 Tips for SmartQA

Communicate Clearly

Download from www.stagsoftware.com/smartqa-ebooks

27

http://www.stagsoftware.com/smartqa-ebooks
http://www.stagsoftware.com/smartqa-wisdom

	The Thinking Mindset for Smart Assurance
	The Doing Aspects for Smart Assurance
	Crafting Brilliant Code - Assuring Early
	Smarts in the Test Lifecycle
	Team Structure for Smart Assurance
	Enhance Productivity
	Transforming into a Smart Tester - Tips

