

Wisdom on Test Design delves into the deeper principles of intelligent testing,
focusing on strategies that ensure high-quality software delivery. It encourages a
mindset shift from simply executing tests to thoughtfully crafting them, with an
emphasis on designing for testability and aligning testing practices with the
broader goals of software development.

Key topics include:

• Developing a test design mindset, understanding system behavior, and
creating impactful test scenarios.

• Prioritising testability with principles like SOLID design and the shift-left
approach.

• Approaching complex UI testing with behavior-driven methods and
manageable entities.

• Expanding coverage beyond code to include entities, environments,
personas, and workflows.

• Leveraging heuristics to uncover subtle edge cases and corner cases.

By presenting testing as a craft rooted in curiosity, rational analysis, and
purposeful design, Wisdom on Test Design provides a transformative
perspective for testers, developers, and quality professionals. It is a must-read for
anyone seeking to go beyond the surface and uncover the profound essence of
intelligent software assurance.

About the author

Thiruvengadam Ashok is the CEO of STAG Software Private Limited & Co-Founder of Pivotrics,
based in Bengaluru, India. Ashok has dedicated his career to the pursuit of quality assurance in
software, continuously evolving his approaches to match the needs of modern systems. He is
the creator of HyBIST, an innovative approach to SmartQA that has revolutionised how teams
approach hypothesis-driven testing.

Ashok’s professional life is deeply intertwined with his personal philosophy. A passionate ultra-
distance runner and long-distance cyclist, he applies the principles of endurance and
exploration to his work, constantly seeking out new ways to improve software quality. He is
also an avid wordsmith, using his love of language to weave both poetry and technical
innovation into his life’s work.

He holds an M.S. in Computer Science from the Illinois Institute of Technology, a Bachelor's
degree in Electronics and Communication Engineering from the College of Engineering,
Guindy, and a Postgraduate Diploma in Environmental Law from the National Law School of
India University, Bangalore. His life maxim—"Love what you do & Do only what you love"—is
reflected in everything he undertakes, from professional projects to personal passions.

Copyright © 2025, Thiruvengadam Ashok

All rights reserved.

No part of this publication may be reproduced, distributed, or transmitted in any form or by
any means, including photocopying, recording, or other electronic or mechanical methods,
without the prior written permission of the publisher, except in the case of brief quotations
used in reviews and certain other noncommercial uses permitted by copyright law.

Disclaimer:
The information contained here is for educational and informational purposes only. While
every effort has been made to ensure the accuracy of the content, the author and publisher
make no representations or warranties regarding the completeness, accuracy, or applicability
of the information provided. The strategies and methodologies described are for
informational purposes and should be adapted to individual circumstances as necessary.

Trademarks:
All product names, logos, and brands mentioned in this book are the property of their
respective owners. Use of these names, logos, and brands does not imply endorsement.

HyBIST is the intellectual property of STAG Software Private Limited.

Edition: First edition, 2025.

TABLE OF CONTENTS

Mindset for Smart Test Design 7
What does it take ? 7

Thinking styles 7

Designing in Testability 8
Introduction 8

Background of DFT 8

The economic value of DFT 8

Why is testability important? 9

‘SOLID’ design principles 9

Law of Demeter (LoD) 10

Guidelines to ease testability of codebase 10

Test Design Approaches 11
#1 User view based 11

#2 Analytical view based 11

#3 Construction view based 12

#4 Test view based 12

#5 Experience-view based 12

#6 Operational-view based 12

#7 Evolution-based 13

Design Approach for Rich UI 14

Smart coverage framework 20
Code coverage 20

Entity coverage 21

Environment coverage 21

Test coverage 21

Persona coverage 21

Some Heuristics for Identifying Corner Cases 23

#1 Heuristic based on TIME 23

#2 Heuristic based on LIFECYCLE 23

#3 Heuristic based on TRANSFORMATION 23

#4 Heuristic based on POSITION 24

#5 Heuristic based on SPACE 24

#6 Heuristic based on SIZE 24

#7 Heuristic based on LINKAGES 24

#8 Heuristic based on LIMIT 25

SMARTQA WISDOM ON TEST DESIGN

MINDSET FOR SMART TEST DESIGN
Testing design is often overshadowed by test execution and automation. However, the
ultimate goal of testing is to deliver clean, high-quality code. Good test design is rooted in a
deeper understanding of quality and functionality. To achieve this, test design should involve
sensitivity to the system’s behavior, focusing on the prevention and detection of defects
through intelligent test scenarios. A thoughtful approach to test design ensures that the
system is tested thoroughly while minimising redundancy and inefficiencies.

What does it take ?
Designing tests with a smart mindset requires incorporating efficiency, simplicity, and clarity
from the start. Prioritising testability, considering multi-perspective views, and focusing on
intent enhances the design approach. Historical insights and simplifying complexity further
ensure that tests are robust and relevant to real-world conditions.

Thinking styles
Smart test design is about thinking critically, questioning deeply, and designing intelligently. It
requires more than just writing test cases—it demands a mindset of efficiency, precision, and
adaptability.

A shift-left mindset means engaging early, focusing on prevention over detection. A risk-driven
perspective ensures effort is spent where it matters most, not in exhaustive, unfocused testing.

Systems thinking is key—seeing beyond isolated components to understand how interactions
shape behavior. A hypothesis-driven mindset questions everything: What can go wrong?
Where might it break? This fuels curiosity, the hallmark of great testers.

Tests should be minimalist yet comprehensive, designed with clarity and impact. Thinking in
terms of real-world behavior rather than just system requirements ensures relevance.
Automation awareness helps in making strategic decisions about what to automate and what
to explore manually.

A smart tester is data-driven, always learning from patterns, failures, and evolving
requirements. Above all, adaptability is crucial—testing is never static, and neither is the
mindset behind it.

7

SMARTQA WISDOM ON TEST DESIGN

DESIGNING IN TESTABILITY

Introduction
Software testability is the degree to which a software artefact (i.e., a software system, software
module, requirements, or design document) supports testing in a given test context. If the
testability of the software artefact is high, identifying faults in the system (if any) through testing
becomes easier.
The correlation between ‘testability’ and good design is evident in the observation that code
with weak cohesion, tight coupling, redundancy, and a lack of encapsulation is difficult to test.
A lower degree of testability results in increased test effort. In extreme cases, a lack of
testability may even hinder testing certain parts of the software or its requirements altogether.
(From [1] “Software testability”)

Testability is a product of effective communication between development, product, and
testing teams. The more testability is considered during feature creation, and the more testers
are involved during this phase, the more effective the testing process becomes.
(From [2] “Knowledge is power when it comes to software testability”)

Background of DFT
Design for testability (DFT) is not a new concept. It has been applied in electronic hardware
design for over 50 years. If an integrated circuit needs to be testable both during its design
stage and in production, it must be designed with testing in mind. These “hooks” for testability
must be embedded at the design phase; they cannot be added later, as the circuit is already in
silicon and cannot be changed.

DFT is a critical non-functional requirement influencing nearly every aspect of electronic
hardware design. Similarly, complex agile software systems require testability considerations
during both the design and production phases. Without designing software for testability,
testing it effectively post-development becomes infeasible.
(From [3] “Design for testability: A vital aspect of the system architect role in SAFe”)

The economic value of DFT
Agile testing addresses two specific business objectives:

1. Critiquing the product by minimising the impact of defects delivered to users.

2. Supporting iterative development by providing quick feedback within a continuous
integration process.

These goals are challenging to achieve if the system does not support simple system,
component, or unit-level testing. Agile programmes that emphasise testability through every
design decision enable the enterprise to achieve shorter runways for business and
architectural epics. DFT reduces the impact of large system scope and allows agile teams to

8

SMARTQA WISDOM ON TEST DESIGN

work with more manageable, high-quality assets, minimising development delays and
reducing the need for rework.
(From [3] “Design for testability: A vital aspect of the system architect role in SAFe”)

Why is testability important?
Testability impacts deliverability. When testers can easily locate issues, debugging is faster, and
the application reaches the user more quickly and with fewer hidden glitches. Higher
testability provides product and development teams with faster feedback, enabling frequent
fixes and iterations.

Shift-left: Rather than waiting until the testing phase, adopting a whole-team approach to
testability means considering it thoughtfully during planning, design, and development. This
includes focusing on key aspects such as documentation, logging, and requirements. The
more knowledge testers have about the product or feature—its purpose and expected
behaviour—the more valuable their testing efforts and results will be.
(From [2] “Knowledge is power when it comes to software testability”)

Exhaustive testing is more practical and achievable when applied in isolation for each
component on all possible measures. This approach enhances quality, rather than attempting
to test the finished product through use cases that address all components simultaneously.

This raises the question: “Are all components testable?” The answer is to design components
to be as highly testable as possible. Additionally, optimal system-level tests should
complement isolated tests to ensure end-to-end completeness. Exhaustive testing involves
placing the right set of tests at the appropriate levels, balancing isolated and system-level tests
effectively.
(From [4] “Designing the software testability”)

‘SOLID’ design principles
These principles can help you write easily testable code that is not only more flexible and
maintainable but also better modularised:

1. Single responsibility principle (SRP): Each software module should have only one
reason to change.

2. Open/closed principle (OCP): Classes should be open for extension but closed to
modification.

3. Liskov substitution principle (LSP): Objects of a superclass should be replaceable with
objects of its subclasses without breaking the application.

4. Interface segregation principle (ISP): No client should be forced to depend on
methods it does not use.

9

SMARTQA WISDOM ON TEST DESIGN

5. Dependency inversion principle (DIP): High-level modules should not depend on low-
level modules; both should depend on abstractions. Abstractions should not depend
on details, but details should depend on abstractions.
(SOLID = SRP + OCP + LSP + ISP + DIP)
(From [5] “Writing testable code”)

Law of Demeter (LoD)
This principle helps maintain decoupling and testability by stating that:

• Each unit should have limited knowledge about other units, interacting only with
closely related ones.

• Each unit should only communicate with its “friends” (immediate dependencies) and
avoid interacting with “strangers” (distant dependencies).
(From [5] “Writing testable code”)

Guidelines to ease testability of codebase
1. Make sure your code has seams: Seams allow behaviour in your programme to be

altered without editing its core logic.

2. Separate object creation from application logic: Use factories for object creation,
keeping application classes focused on business logic.

3. Use dependency injection: Avoid creating or fetching dependencies within a class.
Provide dependencies through constructors or other mechanisms.

4. Avoid global state: Global state complicates code understanding and increases the
potential for test flakiness.

5. Avoid static methods: Static methods lack the seams needed for unit testing and
should be avoided in object-oriented paradigms.

6. Favour composition over inheritance: Composition promotes modularity, making the
code easier to test and avoiding the proliferation of complex class hierarchies.
(From [5] “Writing testable code”)

References
[1] Software testability at https://en.wikipedia.org/wiki/Software_testability
[2] “Knowledge is power when it comes to software testability” https://smartbear.com/blog/
test-and-monitor/knowledge-is-power-when-it-comes-to-software-testa/
[3] “Design for testability: A vital aspect of the system architect role in SAFe” at https://
www.scaledagileframework.com/design-for-testability-a-vital-aspect-of-the-system-architect-
role-in-safe
[4] “Designing the software testability” at https://medium.com/testengineering/designing-the-

10

https://en.wikipedia.org/wiki/Software_testability
https://smartbear.com/blog/test-and-monitor/knowledge-is-power-when-it-comes-to-software-testa/
https://smartbear.com/blog/test-and-monitor/knowledge-is-power-when-it-comes-to-software-testa/
https://smartbear.com/blog/test-and-monitor/knowledge-is-power-when-it-comes-to-software-testa/
https://www.scaledagileframework.com/design-for-testability-a-vital-aspect-of-the-system-architect-role-in-safe
https://www.scaledagileframework.com/design-for-testability-a-vital-aspect-of-the-system-architect-role-in-safe
https://www.scaledagileframework.com/design-for-testability-a-vital-aspect-of-the-system-architect-role-in-safe
https://medium.com/testengineering/designing-the-software-testability-2ef03c983955

SMARTQA WISDOM ON TEST DESIGN

software-testability-2ef03c983955
[5] “Writing testable code” https://medium.com/feedzaitech/writing-testable-code-
b3201d4538eb

TEST DESIGN APPROACHES
Test design often emphasises execution and the ability to cover more ground. The focus has
shifted towards how frequently tests can be executed, often prioritising automation. However,
it is essential to revisit the primary objective, which is to deliver clean code. This requires a
deeper sensitivity to the quality of tests, highlighting the importance of thoughtful test design.

A smart approach to test design involves creating effective scenarios—ideally fewer in number
—that can uncover the most critical issues.

Smart Test Design is about looking at the system from multiple views to:

I want | expect | would-like behaviours to satisfy needs that are implemented well and
comprehensively covered to help me do well on my environments with no side effects.

Decide what to prevent, detect statically, or test—whether through human effort or automation.
Prioritise intent first, followed by the corresponding activity.

Here are TWENTY approaches to smart test design, viewed through SEVEN distinct views.

#1 User view based
1.1 Use the requirement specification to design.
1.2 See actual users of how they work and then use this to design.
1.3 With users doing experience sessions with system and use this information to design.

 #2 Analytical view based
2.1 Use software test techniques (black or white) on spec/structure to design.
2.2 Construct behavior models and use this to design.
2.3 If the system needs to comply with a standard, use the standards information to design.

11

https://medium.com/testengineering/designing-the-software-testability-2ef03c983955
https://medium.com/feedzaitech/writing-testable-code-b3201d4538eb
https://medium.com/feedzaitech/writing-testable-code-b3201d4538eb

SMARTQA WISDOM ON TEST DESIGN

 #3 Construction view based
3.1 Use the code properties like lines/conditions/path to design.
3.2 Exploit your deep understand of technology to understand potential mechanisms/flaws
and use this design.
3.2 Understand how the system has been architected, composed & integrated to design.

 #4 Test view based
4.1 Hypothesise potential faults probable given your understand of usage, structure,
architecture, environment, conditions to design.
4.2 Use potential error return codes, exceptions, deliberate bad inputs, violations of system
states to design.
4.3 Identify potential end failures and failure modes and use this to design.
4.4 Explore the system to understand its behaviour in various contexts and use this to design .
4.5 Probe the system with a series of questions (say what-if) and use this to design.

 #5 Experience-view based
5.1 Use the past history of issues encountered with various customers and design.
5.2 Apply the learning of various situations or deeper knowledge to come u with fault
patterns and use this to design.

 #6 Operational-view based
6.1 Use the understanding of actual business flows, usage profiles of features on various
environments to design.
6.2 Identify various deployment configurations and use this information to design.

12

SMARTQA WISDOM ON TEST DESIGN

 #7 Evolution-based
7.1 Use the information of what code has been changed, to understand how these may
propagate and may cause issues to design.
7.2 Use the information of changes in the environment to understand their impact on the
system and design

Summarising Smart Design is about:

I want | expect | would-like behaviours to satisfy needs that are implemented well and
comprehensively covered to help me do well on my environments with no side effects.

13

SMARTQA WISDOM ON TEST DESIGN

DESIGN APPROACH FOR RICH UI
During a consulting engagement, a tester presented a complex decision table to represent a
behaviour model. Upon closer examination, the behavioural conditions were found to have
been derived by visually examining the complex UI, rather than delving deeper to understand
the underlying behaviour. This challenge with behaviour modelling is not uncommon and has
been observed in numerous organisations.

The question arises: why does a complex UI overwhelm testers? The likely reason is an inability
to see beyond the UI and to question beyond the obvious. The outcome is often an excessive
number of test cases and an overwhelming perception that scientific modelling and design
cannot be applied due to time constraints. However, this is where the intellectual challenge of
testing comes into play—decomposing an entity through rational analysis and curiosity to
design smarter tests.

A rich UI typically contains numerous data fields, some of which depend on others or system
settings. These fields may be organised across multiple tabbed dialogues or spread across
different screens, with certain features appearing in multiple locations. This complexity creates
challenges, including determining where to begin modelling the behaviour and managing
mixed test cases related to fields, UI interactions, behaviour, business flows, and environmental
dependencies.

Let us examine a problem to understand how testing a rich UI can be simplified, using an
airline application structured across four screens, each with its own complexities.

(From Awery Software Screenshots)

1.Setting up a flight schedule for a flight

14

http://awery.net/pages/software.html#page-screenshots

SMARTQA WISDOM ON TEST DESIGN

2. Setting the route information -“start location details”

3. Setting up the route information – “permissions”

15

SMARTQA WISDOM ON TEST DESIGN

3. Setting up the route information – “cargo details”

4. Setting up the route information – “setting up crew”

Let’s analyse what is be observed in these rich UI screens.

1. Firstly, there are data fields—both independent and dependent.

16

SMARTQA WISDOM ON TEST DESIGN

2. Secondly there are features/functions (some of them a mini feature) and a business flow that
combines multiple features.

17

SMARTQA WISDOM ON TEST DESIGN

So, this single rich UI screen consists of a set of features, and enables a complex flow to be
done. How do we test this?

Let us look at good design principles “COHESION & COUPLING “. Good design of software is
high cohesion and loose coupling. Grouping similar actions & data (cohesion) keeping
minimal dependencies between them (coupling).

How is this useful in TEST DESIGN for rich UI?

Let us dig in…

18

SMARTQA WISDOM ON TEST DESIGN

So, what have we done to tackle challenges of complex UI? We have:
1. DECOUPLED complex UI into COHESIVE entities : FIELD, FEATURE, FLOW & UI
2. Applied behavior driven approach for feature test design (decision table)
3. Combined outputs (variations) optimally to test the FLOW (variations table)
4. Used checklist as needed to leverage prior design

In a rich UI, one tends to see HOW-to-do, whereas if it was UI-less, one seems to focus on
“WHAT-is-to-be-done.
The latter is important for a tester to figure out ‘WHAT-ifs’.

19

SMARTQA WISDOM ON TEST DESIGN

SMART COVERAGE FRAMEWORK
We are often challenged on the adequacy of test cases. The traditional concept of code
coverage, while necessary, remains a limited and one-dimensional metric. Although it serves
as a baseline, it is far from sufficient. Other coverage notions, such as Requirements Traceability
Matrix (RTM) and test coverage, have yet to be rigorously developed to support objective
evaluations.

To address the need for rapid and comprehensive assessment, we propose a simple yet
holistic smart coverage framework that provides a complete 360-degree perspective."

Code coverage
"At a structural level, code coverage measures whether all code elements—such as lines,
conditions, paths, functions, classes, and files—have been executed at least once. This helps
validate that the implemented code has been exercised through functional test cases, serving
as an indicator of the completeness of these tests, particularly in the early stages of testing.

However, it's important to recognise that code coverage only assesses the execution of
existing code; it does not detect missing code or unimplemented functionality."

20

SMARTQA WISDOM ON TEST DESIGN

Entity coverage
At a behavioural level, entity coverage assesses whether all entities—ranging from lower-level
components to higher-level flows—have been validated through appropriate test cases. A
system is composed of various interconnected entities, and it is essential to ensure that each
entity, whether at the granular level (e.g., components or features) or at the broader level (e.g.,
requirements or flows), has been thoroughly validated.

This approach ensures a comprehensive perspective, addressing both ‘in-the-small’ (individual
components) and ‘in-the-large’ (integrated flows), thereby confirming that all aspects of the
system have been effectively validated.

Environment coverage
Have we validated the system across all relevant environments? An environment comprises
various elements such as the operating system, browser, database, hardware devices, and
more. Environment coverage ensures that validation has been performed across all critical
combinations of these elements to guarantee compatibility and reliability in real-world
scenarios.

Test coverage
Have we designed test cases that encompass a variety of test types to evaluate the full scope
of the system? The scope includes both functional correctness (functionality) and non-
functional attributes (performance, security, etc.). Achieving comprehensive test coverage
ensures that all relevant types of tests are executed, addressing both functional and non-
functional requirements effectively.

Persona coverage
Finally, have we considered scenarios from a persona perspective to ensure correctness from
the user’s point of view? After validating the product across dimensions like code,
environment, entities, and test types, the final step is to evaluate it through the lens of the end
consumer. Persona coverage ensures the system has been validated from the perspective of
various personas (or actors), recognising that not all end users may be human. This approach
helps align the system's functionality and usability with the needs of its intended users.

21

SMARTQA WISDOM ON TEST DESIGN

Concluding coverage should not be viewed as a metric applied only after the design phase;
instead, it should serve as a guiding principle driving rapid and effective design from the outset.

22

SMARTQA WISDOM ON TEST DESIGN

SOME HEURISTICS FOR IDENTIFYING CORNER CASES
As developers, we often focus on solving problems for typical or generic cases, which can lead
to overlooking critical edge cases. For instance, while we may handle a system’s normal
operations effectively, we might miss scenarios like its behavior during the first-time setup.

Here I outline EIGHT heuristics that I discovered while testing a SaaS platform we were
building. These heuristics are designed to uncover potential issues and are based on the
following dimensions: Time, Lifecycle, Transformation, Position, Space, Size, Linkages, and
Limit.

#1 Heuristic based on TIME

#2 Heuristic based on LIFECYCLE

#3 Heuristic based on TRANSFORMATION

The first use of a system, such as creating a project, registering a
user, performing an initial transaction, or purging content, highlights
behaviours unique to a fresh or final state. These actions reflect
transitions from start to end within the system.

Repetition of system states involves cycling through starting,
performing activities, and reaching an end, then restarting and
continuing. A workflow may remain half-done, be suspended and
resumed, or conclude through abandonment or logical closure.

The notion of transformation involves changes like formats or views,
as seen in UI responsiveness at extreme view sizes. For content, it
includes transformations to extremes, such as overly large, small, or
null values.

23

SMARTQA WISDOM ON TEST DESIGN

#4 Heuristic based on POSITION

#5 Heuristic based on SPACE

#6 Heuristic based on SIZE

#7 Heuristic based on LINKAGES

Observe behaviours of elements at the start or end, and how those
in the middle behave when shifted to either end.

The notion of space involves contents being close or far, shrunk or
expanded, particularly at extremes of proximity or size. An example
is a responsive UI adjusting as the screen shrinks or expands.

The notion of volume or size includes extremes, such as uploading
very large files or extremely small ones. For display, it could involve
showing tiny or large content, perhaps through zoom.

The notion of linkages includes patterns like 1-1, 1-N, or N-N, with
increasing chain lengths such as 1-1-1 or N-1-N. This examines
linkage integrity, especially when N=0 or chains propagate with
varying N.

24

SMARTQA WISDOM ON TEST DESIGN

#8 Heuristic based on LIMIT

Extremes of value, such as minimum and maximum, are the most
commonly understood within a defined range.

25

“We are SmartQA evangelists. For over two decades we have
transformed how individuals, teams and organisations have
practised testing. We espouse methodology to test intelligently.
Our mission - Elevate to high performance via SmartQA.”

www.stagsoftware.com

The HyBIST Approach to SmartQA - MASTERCLASS

Testing is deep probing to seek clarity and in the process uncover,
preempt issues rapidly. The HyBIST approach enables designing
smart probes and probing the system smartly.

https://smartqa.academy/courses/smartqa-using-hybist

doSmartQA - AI based Smart Probing Assistant to interrogate,
hypothesise issues, design & evaluate user story or a set of stories in
a sprint rapidly. An assistant for smart session-based testing based
on HyBIST.
Download personal edition from here

SmartQA Musings - A gentle flurry of interesting thoughts on smart
assurance as a weekly webcast. A refreshing view of assurance to
broaden & deepen thoughts/actions.
www.stagsoftware.com/subscribe

SmartQA Biweekly - Ignite your curiosity with fresh insights,
thought-provoking ideas, and inspiring content delivered straight to
your inbox every fortnight.
www.stagsoftware.com/subscribe

26

http://www.stagsoftware.com
https://smartqa.academy/courses/smartqa-using-hybist
https://chromewebstore.google.com/detail/dosmartqa-personal-editio/npeempjncmpfiiknagfafkbklomdenjk
http://www.stagsoftware.com/subscribe
http://www.stagsoftware.com/subscribe

A rich collection of original content on smart assurance

SmartQA Wisdom - Profound nuggets of wisdom to think deeply, do
rapidly & smartly for Test Practitioners.

on Smart Understanding

on Smart Assurance

on Personal Growth

on Mindset & Habits

on Problem Solving

Download from www.stagsoftware.com/smartqa-wisdom

SmartQA eBooks - for Sr Engg/QA managers, Sr Test Practitioner &
Young Test Practitioners too.

HyBIST at a glance

do SmartQA -The HyBIST Approach

High Performance QA

50 Tips for SmartQA

Communicate Clearly

Download from www.stagsoftware.com/smartqa-ebooks

27

http://www.stagsoftware.com/smartqa-wisdom
http://www.stagsoftware.com/smartqa-ebooks

	Mindset for Smart Test Design
	Designing in Testability
	Test Design Approaches
	Design Approach for Rich UI
	Smart coverage framework
	Some Heuristics for Identifying Corner Cases

